C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of.

Slides:



Advertisements
Similar presentations
BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
Advertisements

Velocity bunching SPARC Daniele Filippetto on behalf of SPARC team.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
First operation of the TTF2 injector with beam Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Hamburg, 16 Sept 2003.
Reduced Gun Simulations 1. Comparison 60MV/m Gun vs 50MV/m Gun, Flat Top Laser Pulse 2. Comparison for the worst case: Gun50+Gauss Laser Pulse 3. Summary.
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
Cecile Limborg-Deprey Theory Club: The LCLS December 3rd 2004 The LCLS Injector C.Limborg-Deprey Emittance compensation.
C.Limborg-Deprey Beam Dynamics with mode November 3 rd 2004 Beam Dynamics in the presence of mode 0 C.Limborg-Deprey 0 and PI.
C.Limborg-Deprey ERL Workshop, Jefferson March 20th 2005 Optimum electron distribution for space charge dominated beams.
C.Limborg-Deprey Beam Dynamics for RF gun November 3 rd 2004 Beam Dynamics Justification of RF Gun Modifications.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
C.Limborg-Deprey LCLS FAC, April April Injector Physics C.Limborg-Deprey, D.Dowell,Z.Li*, J.Schmerge, L.Xiao* RF.
Cecile Limborg-Deprey Injector Commissioning September Injector Commissioning Plans C.Limborg-Deprey Gun exit measurements.
Injector RF Design Review November 3, 2004 John Schmerge, SLAC L0-1 Electrical and Mechanical Tolerances John Schmerge, SLAC.
Cecile Limborg-Deprey Injector October Injector Physics C.Limborg-Deprey Diagnostics and Commissioning GTL measurements.
David H. Dowell Injector Physics/Diagnostics/Gun&L0 RF April 29-30, 2004 Injector Physics / Diagnostics / Gun & L0 Linac.
F Specifications for the dark current kicker for the NML test facility at Fermilab S. Nagaitsev, M. Church, P. Piot, C.Y. Tan, J. Steimel Fermilab May.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Overview of ERL MEIC Cooler Design Studies S.V. Benson, Y. Derbenev, D.R. Douglas, F. Hannon, F. Marhauser, R. A Rimmer, C.D. Tennant, H. Zhang, H. Wang,
David H. Dowell and Friends SLAC National Accelerator Laboratory David H. Dowell and Friends SLAC National Accelerator Laboratory The LCLS Gun ICFA Beam.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
Injector Requirements Linac Coherent Light Source Stanford Linear Accelerator Center Technical Review, March 1st, 2004 Cécile.
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
LCLS-II Injector layout design and study Feng Zhou 8/19/2015.
Beam dynamics simulations with the measured SPARC gun- solenoid field G. Bazzano, P. Musumeci, L. Picardi, M. Preger, M. Quattromini, C. Ronsivalle, J.
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
The LCLS Injector C.Limborg-Deprey
Thermal emittance measurement Gun Spectrometer
Injector Performance Requirements Conventional Facilities Update
MIT Compact X-ray Source
LCLS Injector: Introduction D. H
ERL Main-Linac Cryomodule
Progress activities in short bunch compressors
Overview Multi Bunch Beam Dynamics at XFEL
LCLS Commissioning Parameters
Injector: What is needed to improve the beam quality?
Simulation Calculations
Injector Commissioning C
Beam Characterization
Single Side Coupler for input coupler of L0-1
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Simulations for the LCLS Photo-Injector C
COMB beam: TSTEP simulations up to THz station
CEPC Injector Linac beam dynamics
LCLS Injector Commissioning P
LCLS Commissioning Parameters
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Injector Physics C. Limborg-Deprey, D. Dowell ,Z. Li. ,H. Loos, J
Coupler Effects in High Energy Part of XFEL Linac
XFEL Beam Dynamics Activity at CANDLE
Evgenij Kot XFEL beam dynamics meeting,
Minimized emittance for high charge with multi cell superconducting guns and solenoidal focusing D. Lipka, BESSY.
Injector Physics C.Limborg-Deprey Feb.8th 2006
Presentation transcript:

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of Linac structures C.Limborg-Deprey Parameter goals for the LCLS injector Dipole moment in L01 in L02 Quadrupole moment

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Gun S1S2 L MV/m L MV/m ‘Laser Heater’ 6 MeV  = 1.6  m  ,un. = 3keV 63 MeV  = 1.08  m  ,un. = 3keV 135 MeV  = 1.07  m  ,un. = 3keV DL1 135 MeV  = 1.07  m  ,un. = 40keV Linac tunnel UV Laser 200  J, = 255 nm, 10ps, r = 1.2 mm Peak Current100 A Charge1 nC  projected,  slice  1.2,1  m.rad Repetition rate120 Hz

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Nominal tuning – Q = 1nC,10ps  th = 0.72 mm.mrad, r laser = 1.2 mm Solenoid 1  0.3%  gun  2.5  Solenoid 2 20% Linac Field 12 % (E Final = 150 MeV ) E gun  0.5% Balance~ 3% is ok Errrors

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Combination of errors Using extreme values of parameters deviations meeting regulation specifications Design for 1nC operation even if other operating points are being investigated Using extreme values of parameters deviations meeting regulation specifications Design for 1nC operation even if other operating points are being investigated Param.Nom.UnitsStability Requirement Sol kG  0.02 % Sol20.748kG  1 % Gun Phase  /0-X  0.1  Gun Field 120MV/m  0.5% Charge1nC  5% L01 Field 18MV/m  2.5% 2^6 possibilities = 64 runs  Cannot afford additional emittance growth

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 S-Band linac structure Correction of amplitude term with offset of cell No correction of phase term See J.Schmerge talk and Blue Book P 147, P191

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 L01 entrance coupler Dipole time dependent head-tail kick, integrated over the entrance cell and two first full cell (see Z.Li’s talk) 10ps bunch, Phase = close to crest, 18MV/m  (   )   increase with   = rms of head-tail kick

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 L01 entrance coupler Crest = 0 Max – min for a 10 ps long bunch Rms a 10 ps long bunch a 10 ps long bunch Vrf = 18 MV/m

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 L01 coupler PARMELA simulations of misalignment including transverse wakefield show similar magnitude 200  rad     =  4% increase

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 L01 exit coupler The emittance growth will not exceed 1% at the exit of L01

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 L02 entrance coupler

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 L02 exit coupler

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Quadrupole moment Quadrupole moment in L01 entrance for 10 ps Dual feed

C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Conclusion Dual Feed mandatory for both L01 and L02 input couplers output couplers do not absolutely require dual feed Racetrack shape of entrance cell is mandatory for both L01 and L02