Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.

Slides:



Advertisements
Similar presentations
IDM2004 G. Gerbier LSM - Fréjus underground sites status and projects Gilles Gerbier CEA/Saclay - LSM.
Advertisements

Overview for an European Strategy for neutrino Physics Yves Déclais CNRS/IN2P3/UCBL IPN Lyon Measuring the neutrino mixing matrix Reactor experiments NUMI.
Controlling Systematics in a Future Reactor  13 Experiment Jonathan Link Columbia University Workshop on Future Low-Energy Neutrino Experiments April.
Stokstad, Heeger NSD, May 1, 2003 Reactor Neutrino Measurement of  13 Measuring the Last Undetermined Neutrino Mixing Angle  13 Searching for Subdominant.
6/6/2003Jonathan Link, Columbia U. NuFact03 Future Measurement of sin 2 2  13 at Nuclear Reactors Jonathan Link Columbia University June 6, 2003 ′03.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
25/10/2007M. Dracos1 EURO The European Design Study for a high intensity neutrino oscillation facility (Rob Edgecock, Mats Lindroos, Marcos Dracos)
Neutrino physics: experiments and infrastructure Anselmo Cervera Villanueva Université de Genève Orsay, 31/01/06.
How Will We See Leptonic CP Violation? D. Casper University of California, Irvine.
Alain Blondel Detectors UNO (400kton Water Cherenkov) Liquid Ar TPC (~100kton)
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
12 December 2003APS Neutrino StudyE. Blucher APS Neutrino Study: Reactor Working Group What can we learn from reactor experiments? Future reactor experiments.
Measuring  13 with Reactors Stuart Freedman University of California at Berkeley SLAC Seminar September 29, 2003.
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
Alain Blondel Neutrino Factory scenarios I will endeavour to address some principle design issues related to the physics use of high intensity muon beams.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
Jun Cao Institute of High Energy Physics, Beijing Daya Bay Neutrino Experiment 3rd International Conference on Flavor Physics, Oct. 3-8, 2005 National.
1 Further Demands on beam Intense, Intense, Intense, ….Intense, Intense, Intense, …. –Very far detector, extremely small cross section, search small osci.
Eun-Ju Jeon Sejong Univ. Sept. 09, 2010 Status of RENO Experiment Neutrino Oscillation Workshop (NOW 2010) September 4-11, 2010, Otranto, Lecce, Italy.
Beta-beam study group Letter of Intent beta-beam design study Mats Lindroos On behalf of the Beta-beam working group.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 20 August 2013M. Dracos.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Using Reactor Neutrinos to Study Neutrino Oscillations Jonathan Link Columbia University Heavy Quarks and Leptons 2004 Heavy Quarks and Leptons 2004 June.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
Road Map of Future Neutrino Physics A personal view Ken Peach Round Table discussion at the 6 th NuFACT Workshop Osaka, Japan 26 th July – 1 st August.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
Karsten Heeger, LBNL TAUP03, September 7, 2003 Reactor Neutrino Measurement of  13 Karsten M. Heeger Lawrence Berkeley National Laboratory.
A new underground laboratory at Frejus Jacques Bouchez CEA-SACLAY NNN05-Aussois April 7, 2005 Historical overview Latest developments Outlook.
J. Bouchez CEA/DAPNIA CHIPP Neuchâtel June 21, 2004 A NEW UNDERGROUND LABORATORY AT FREJUS Motivations and prospects.
Karsten Heeger, LBNL NDM03, June 11, 2003 Future Reactor Neutrino Experiments Novel Neutrino Oscillation Experiments for Measuring the Last Undetermined.
,,,,, The Daya Bay Reactor Neutrino Experiment Liangjian Wen On behalf of the Daya Bay Collaboration Institute of High Energy Physics Daya Bay Detectors.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
Pre-  Factory Possibilities Leslie Camilleri CERN, PH Scoping Study Meeting Imperial College May 6, 2005.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
Super Beams, Beta Beams and Neutrino Factories (a dangerous trip to Terra Incognita) J.J. Gómez-Cadenas IFIC/U. Valencia Original results presented in.
Andreas Jansson, Neutrino Workshop, ANL, March 3-4, 2004 Possible beta beam scenario(s) in the US Andreas Jansson Fermilab.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 10 September 2013M. Dracos.
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
IDS-NF Accelerator Baseline The Neutrino Factory [1, 2] based on the muon storage ring will be a precision tool to study the neutrino oscillations.It may.
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
CERN, 15/03/05EURISOL - Beta Beam Task1 EURISOL and the Beta-Beam Task Status and Planning Michael Benedikt Mats Lindroos AB-Department, CERN.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
6 January 2004EFI Faculty Lunch Future Neutrino Oscillation Experiments Neutrino oscillations, CP violation, and importance of  13 Accelerator vs. reactor.
J. Bouchez CEA/DAPNIA NuFact 03 June 5,2003 BETA BEAMS : design update and physics reach Physics motivation Recent progress on design Expected performances.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Future neutrino oscillation experiments J.J. Gómez-Cadenas U. Valencia/KEK Original results presented in this talk based on work done in collaboration.
Energy Dependence and Physics Reach in regard to Beta/EC Beams J. Bernabeu U. Valencia and IFIC B. Pontecorvo School September 2007.
A monochromatic neutrino beam for  13 and  J. Bernabeu U. de Valencia and IFIC NO-VE III International Workshop on: "NEUTRINO OSCILLATIONS IN VENICE"
Jacques Bouchez Radioactive Beams for Nuclear and Neutrino Physics Les Arcs Mars 2003.
Near Detector Tasks EuroNu Meeting, CERN 26 March 2009 Paul Soler.
NWG Presentation Heeger, Freedman, Kadel, Luk LBNL, April 11, 2003 Reactor Neutrino Measurement of  13 Searching for Subdominant Oscillations in e  ,
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Epiphany06 Alain Blondel A revealing comparison: A detailed comparison of the capability of observing CP violation was performed by P. Huber (+M. Mezzetto.
A BASELINE BETA-BEAM Mats Lindroos AB Department, CERN
Donato Nicolo` Pisa University & INFN,Pisa
Alain Blondel 11 October 2010 GDR NEU2012 summary
Superbeams with SPL at CERN
Daya Bay Neutrino Experiment
Beam Dump Experiments with Photon and Electron Beams
Based on material presented at various meetings
Presentation transcript:

Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003 Highlights and personnal impressions part II

Summary of Nufact-03 Alain Blondel BETA BEAMS Concept proposed by Piero Zucchelli Produce radioactive ions (ISOL technique) Accelerate them in the CERN accelerator complex up to  of order 100 Store ions in a storage ring with long straight sections aimed at a far detector Advantages strongly focussed neutrino beam due to small Q value of beta decays (quality factor  /Q) very pure flavour composition (   contamination ~ ) perfectly known energy spectrum Baseline scenario studied at CERN (Mats Lindroos and collaborators) Recent progress presented at a special workshop at Moriond Possible synergy between beta beams and EURISOL Updated study of expected performances (Mauro Mezzetto)

Summary of Nufact-03 Alain Blondel A new idea for the ion source: using a pulsed ECR source Idea proposed by Pascal Sortais at Moriond workshop Based on experimental work done at Grenoble with Phoenix => High density/high frequency plasmas allow to produce efficiently short bunches (20  s instead of 20 ms) of ions with a high repetition rate (16 Hz) by pulsing the RF and the HV Advantages: Ions are already very well bunched and (hopefully) totally stripped This simplifies considerately the design downstream: Possibility to use a LINAC rather than a cyclotron or a FFAG Multiple turn injection in the storage ring becomes possible (40 turns)

Summary of Nufact-03 Alain Blondel New RFQ LINAC 3 PSB Simplification of the injection system P. Sortais, Moriond workshop

Summary of Nufact-03 Alain Blondel sin 2 

Summary of Nufact-03 Alain Blondel    and  measurements using superbeam and betabeam SPL: 2 years in  + 8 years in anti  BETABEAM: 10 years of 6 He AND 18 Ne (Mauro Mezzetto)

Summary of Nufact-03 Alain Blondel UPDATED CP sensitivity : domain of 99% CL effect for maximal CP violation

Summary of Nufact-03 Alain Blondel Future Measurement of sin 2 2  13 at Nuclear Reactors Jonathan Link Columbia University June 6, 2003 ′03

Summary of Nufact-03 Alain Blondel Krasnoyarsk, Russia (hep-ex/ ) 115m 1000m Completely underground facility was used by the Soviets for weapons production. One ~2 GW reactor Two 50 ton detectors Near detector at 115 meters Far detector at 1000 meters About 60 days of reactor off running per year. ~100 GW·tons (4 years → ~0.02)

Summary of Nufact-03 Alain Blondel near far Kashiwazaki, Japan (hep-ph/ ) 7 Reactors, 24 GW thermal (most powerful site in the world) Three ~8 ton detectors Two near detectors at baselines of 300 to 350 meters One far detector at ~1300 meters ~190 GW·tons See O. Yasuda in WG1 today at 16:00

Summary of Nufact-03 Alain Blondel Possible U.S. Sites Top 30 U.S. Sites by Power Performance Most U.S. sites have one or two reactors. One and two reactor sites are conceptually easier: only one baseline. (The experiment can be done at multi- reactor sites.) U.S. two reactor sites are among the best in the world in power performance. ~350 GW·tons (with a 50 ton detector) Many U.S. sites have other favorable qualities such as potential for shielding. The challenge will be getting reactor operators to agree to work with us!

Summary of Nufact-03 Alain Blondel What is the Right Way to Make the Measurement? Start with the Systematics and Work Backwards… CHOOZ Systematic Errors, Normalization Near Detector Identical Near and Far Detectors Movable Detectors  Veto and Neutron Shield CHOOZ Background Error BG rate 0.9% Statistics may also be a limiting factor to the sensitivity.

Summary of Nufact-03 Alain Blondel Movable Detector Scenario The far detector spends about 10% of the run at the near site where the relative efficiency of the two detectors is measured head-to-head. The detectors must be well underground to reduce the cosmic rate. So the near and far sites need to be connected by a tunnel!

Summary of Nufact-03 Alain Blondel Detector Tunnel Wall Larger version of CHOOZ (smaller KamLAND) Homogenous Volume Viewed by PMT’s Gadolinium Loaded, Liquid Scintillator Target Pure Mineral Oil Buffer In the Movable Scenario Rail System for Easy Transport Carries Electronics and Front-end DAQ. Detector Design

Summary of Nufact-03 Alain Blondel Systematic Error from Backgrounds At sites with more than one reactor there is no reactor off running, so other ways of measuring the backgrounds are needed. The toughest background comes from fast neutrons created by cosmic  ’s. They can mimic the coincidence signal by striking a proton and then capturing. 1.Build it deeper (hard to do!) 2.Veto  ’s and shield neutrons (effective depth) 3.Measure the recoil proton energy and extrapolate into the signal region. Veto Detectors p n   n

Summary of Nufact-03 Alain Blondel Conclusions and Prospects The physics of sin 2 2  13 is interesting and important. An international proto-collaboration has been formed to work towards a proposal by 2005 (and a white paper this fall). The search for a suitable reactor site is underway. Controlling the systematic errors is the key to making this measurement. Reactor sensitivities are comparable off-axis and the two methods are complementary. With a 3 year run, the sensitivity in sin 2 2  13 could reach 0.01 (90% CL) at  m 2 = 2.5×10 -3.

Summary of Nufact-03 Alain Blondel Degeneracies

Summary of Nufact-03 Alain Blondel JJ and several others: neutrino factory Golden + silver (taus) + likely existing info from superbeam will solve ambiguities.