CS61C L33 Virtual Memory I (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c UC Berkeley.

Slides:



Advertisements
Similar presentations
1 Lecture 13: Cache and Virtual Memroy Review Cache optimization approaches, cache miss classification, Adapted from UCB CS252 S01.
Advertisements

Virtual Memory. The Limits of Physical Addressing CPU Memory A0-A31 D0-D31 “Physical addresses” of memory locations Data All programs share one address.
CSIE30300 Computer Architecture Unit 10: Virtual Memory Hsin-Chou Chi [Adapted from material by and
Cs 325 virtualmemory.1 Accessing Caches in Virtual Memory Environment.
Virtual Memory Adapted from lecture notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley.
CS61C L35 VM I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
Lecturer PSOE Dan Garcia
CS61C L34 Virtual Memory I (1) Garcia, Spring 2007 © UCB 3D chips from IBM  IBM claims to have found a way to build 3D chips by stacking them together.
Chap. 7.4: Virtual Memory. CS61C L35 VM I (2) Garcia © UCB Review: Caches Cache design choices: size of cache: speed v. capacity direct-mapped v. associative.
CS 61C L24 VM II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Virtual Memory Adapted from lecture notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley and Rabi Mahapatra & Hank Walker.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 34 – Virtual Memory II Jim Cicconi of AT&T says that the surge of video.
Virtual Memory.
S.1 Review: The Memory Hierarchy Increasing distance from the processor in access time L1$ L2$ Main Memory Secondary Memory Processor (Relative) size of.
CS61C L24 Cache III, VM I(1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 – Cache.
CS 61C L23 VM I (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #23: VM I Andy Carle.
COMP3221 lec36-vm-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 13: Virtual Memory - I
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 16 Instructor: L.N. Bhuyan
CS 61C L24 VM II (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #24: VM II Andy Carle.
CS61C L25 Virtual Memory I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25.
COMP 3221: Microprocessors and Embedded Systems Lectures 27: Virtual Memory - II Lecturer: Hui Wu Session 2, 2005 Modified.
CS61C L19 VM © UC Regents 1 CS61C - Machine Structures Lecture 19 - Virtual Memory November 3, 2000 David Patterson
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB Andy Carle inst.eecs.berkeley.edu/~cs61c-ta inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L25 VM III (1) Garcia, Spring 2004 © UCB TA Chema González www-inst.eecs/~cs61c-td inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L35 Virtual Memory II (1) Garcia, Spring 2007 © UCB Hardware repair?!  This technology allows you to “patch” your hardware after it has been installed.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 35 – Virtual Memory III Researchers at three locations have recently added.
ECE 232 L27.Virtual.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 27 Virtual.
CS61C L34 Virtual Memory II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley.
CS61C L36 VM II (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
©UCB CS 162 Ch 7: Virtual Memory LECTURE 13 Instructor: L.N. Bhuyan
CS 430 – Computer Architecture 1 CS 430 – Computer Architecture Virtual Memory William J. Taffe using slides of David Patterson.
Cs 61C L18 Cache2.1 Patterson Spring 99 ©UCB CS61C Improving Cache Memory and Virtual Memory Introduction Lecture 18 April 2, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 33 – Virtual Memory I OCZ has released a 1 TB solid state drive (the biggest.
CS 61C L23 Caches IV / VM I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C :
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 34 – Virtual Memory II Researchers at Stanford have developed “nanoscale.
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 24 Instructor: L.N. Bhuyan
COMP3221 lec37-vm-II.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 13: Virtual Memory - II
CS61C L37 VM III (1)Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L7.1.1 VM I (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture VM I Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
CS 61C L7.1.2 VM II (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture VM II Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
Lecture 19: Virtual Memory
Virtual Memory Part 1 Li-Shiuan Peh Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology May 2, 2012L22-1
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 35 – Virtual Memory III ”The severity of the decline in the market is further evidence.
Virtual Memory. Virtual Memory: Topics Why virtual memory? Virtual to physical address translation Page Table Translation Lookaside Buffer (TLB)
Review (1/2) °Caches are NOT mandatory: Processor performs arithmetic Memory stores data Caches simply make data transfers go faster °Each level of memory.
Virtual Memory Additional Slides Slide Source: Topics Address translation Accelerating translation with TLBs class12.ppt.
Virtual Memory. Virtual Memory: Topics Why virtual memory? Virtual to physical address translation Page Table Translation Lookaside Buffer (TLB)
Review °Apply Principle of Locality Recursively °Manage memory to disk? Treat as cache Included protection as bonus, now critical Use Page Table of mappings.
Virtual Memory.  Next in memory hierarchy  Motivations:  to remove programming burdens of a small, limited amount of main memory  to allow efficient.
Csci 136 Computer Architecture II – Virtual Memory
IT 251 Computer Organization and Architecture
CS203 – Advanced Computer Architecture Virtual Memory.
CS161 – Design and Architecture of Computer
Lecturer PSOE Dan Garcia
ECE232: Hardware Organization and Design
CS161 – Design and Architecture of Computer
CS 704 Advanced Computer Architecture
IT 251 Computer Organization and Architecture
Some of the slides are adopted from David Patterson (UCB)
There is one handout today at the front and back of the room!
Guest Lecturer: Justin Hsia
Lecture 14 Virtual Memory and the Alpha Memory Hierarchy
Review (1/2) Caches are NOT mandatory:
Csci 211 Computer System Architecture – Review on Virtual Memory
Instructor Paul Pearce
Morgan Kaufmann Publishers Memory Hierarchy: Virtual Memory
CSE 451: Operating Systems Autumn 2003 Lecture 10 Paging & TLBs
CSE 451: Operating Systems Autumn 2003 Lecture 10 Paging & TLBs
Albert Chae, Instructor
COMP3221: Microprocessors and Embedded Systems
Presentation transcript:

CS61C L33 Virtual Memory I (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 33 – Virtual Memory I CPU + GPU = “Fusion”  AMD recently aquired ATI, maker of high-performance graphics chips, and will create a single, unified processor with BOTH the CPU and GPU on a chip. This could yield cheaper PCs & better performance +

CS61C L33 Virtual Memory I (2) Garcia, Fall 2006 © UCB Review: Caches Cache design choices: size of cache: speed v. capacity direct-mapped v. associative for N-way set assoc: choice of N block replacement policy 2nd level cache? Write through v. write back? Best choice depends on programs, technology, budget. Use performance model to pick between choices.

CS61C L33 Virtual Memory I (3) Garcia, Fall 2006 © UCB Another View of the Memory Hierarchy Regs L2 Cache Memory Disk Tape Instr. Operands Blocks Pages Files Upper Level Lower Level Faster Larger Cache Blocks Thus far { { Next: Virtual Memory

CS61C L33 Virtual Memory I (4) Garcia, Fall 2006 © UCB Memory Hierarchy Requirements If Principle of Locality allows caches to offer (close to) speed of cache memory with size of DRAM memory, then recursively why not use at next level to give speed of DRAM memory, size of Disk memory? While we’re at it, what other things do we need from our memory system?

CS61C L33 Virtual Memory I (5) Garcia, Fall 2006 © UCB Memory Hierarchy Requirements Allow multiple processes to simultaneously occupy memory and provide protection – don’t let one program read/write memory from another Address space – give each program the illusion that it has its own private memory Suppose code starts at address 0x But different processes have different code, both residing at the same address. So each program has a different view of memory.

CS61C L33 Virtual Memory I (6) Garcia, Fall 2006 © UCB Virtual Memory Called “Virtual Memory” Next level in the memory hierarchy: Provides program with illusion of a very large main memory: Working set of “pages” reside in main memory - others reside on disk. Also allows OS to share memory, protect programs from each other Today, more important for protection vs. just another level of memory hierarchy Each process thinks it has all the memory to itself (Historically, it predates caches)

CS61C L33 Virtual Memory I (7) Garcia, Fall 2006 © UCB Virtual to Physical Address Translation Each program operates in its own virtual address space; ~only program running Each is protected from the other OS can decide where each goes in memory Hardware (HW) provides virtual  physical mapping virtual address (inst. fetch load, store) Program operates in its virtual address space HW mapping physical address (inst. fetch load, store) Physical memory (incl. caches)

CS61C L33 Virtual Memory I (8) Garcia, Fall 2006 © UCB Analogy Book title like virtual address Library of Congress call number like physical address Card catalogue like page table, mapping from book title to call # On card for book, in local library vs. in another branch like valid bit indicating in main memory vs. on disk On card, available for 2-hour in library use (vs. 2-week checkout) like access rights

CS61C L33 Virtual Memory I (9) Garcia, Fall 2006 © UCB Simple Example: Base and Bound Reg 0  OS User A User B User C $base $base+ $bound Want: discontinuous mapping Process size >> mem Addition not enough!  use Indirection! Enough space for User D, but discontinuous (“fragmentation problem”)

CS61C L33 Virtual Memory I (10) Garcia, Fall 2006 © UCB Mapping Virtual Memory to Physical Memory 0 Physical Memory  Virtual Memory CodeStatic Heap Stack 64 MB Divide into equal sized chunks (about 4 KB - 8 KB) 0 Any chunk of Virtual Memory assigned to any chuck of Physical Memory (“page”)

CS61C L33 Virtual Memory I (11) Garcia, Fall 2006 © UCB Paging Organization (assume 1 KB pages) Addr Trans MAP Page is unit of mapping Page also unit of transfer from disk to physical memory page 0 1K Virtual Memory Virtual Address page 1 page 31 1K 2048 page 2... page Physical Address Physical Memory 1K page 1 page 7...

CS61C L33 Virtual Memory I (12) Garcia, Fall 2006 © UCB Virtual Memory Mapping Function Cannot have simple function to predict arbitrary mapping Use table lookup of mappings Use table lookup (“Page Table”) for mappings: Page number is index Virtual Memory Mapping Function Physical Offset = Virtual Offset Physical Page Number = PageTable[Virtual Page Number] (P.P.N. also called “Page Frame”) Page Number Offset

CS61C L33 Virtual Memory I (13) Garcia, Fall 2006 © UCB Address Mapping: Page Table Virtual Address: page no.offset Page Table Base Reg Page Table located in physical memory index into page table + Physical Memory Address Page Table Val -id Access Rights Physical Page Address. V A.R. P. P. A....

CS61C L33 Virtual Memory I (14) Garcia, Fall 2006 © UCB Page Table A page table is an operating system structure which contains the mapping of virtual addresses to physical locations There are several different ways, all up to the operating system, to keep this data around Each process running in the operating system has its own page table “State” of process is PC, all registers, plus page table OS changes page tables by changing contents of Page Table Base Register

CS61C L33 Virtual Memory I (15) Garcia, Fall 2006 © UCB Administrivia Do your reading! Caches, VM can be tricky to get. We’ve hired two more readers to help; here is the status of your assignments

CS61C L33 Virtual Memory I (16) Garcia, Fall 2006 © UCB Requirements revisited Remember the motivation for VM: Sharing memory with protection Different physical pages can be allocated to different processes (sharing) A process can only touch pages in its own page table (protection) Separate address spaces Since programs work only with virtual addresses, different programs can have different data/code at the same address! What about the memory hierarchy?

CS61C L33 Virtual Memory I (17) Garcia, Fall 2006 © UCB Page Table Entry (PTE) Format Contains either Physical Page Number or indication not in Main Memory OS maps to disk if Not Valid (V = 0) If valid, also check if have permission to use page: Access Rights (A.R.) may be Read Only, Read/Write, Executable... Page Table Val -id Access Rights Physical Page Number V A.R. P. P. N. V A.R. P. P.N.... P.T.E.

CS61C L33 Virtual Memory I (18) Garcia, Fall 2006 © UCB Paging/Virtual Memory Multiple Processes User B: Virtual Memory  Code Static Heap Stack 0 Code Static Heap Stack A Page Table B Page Table User A: Virtual Memory  0 0 Physical Memory 64 MB

CS61C L33 Virtual Memory I (19) Garcia, Fall 2006 © UCB Comparing the 2 levels of hierarchy Cache versionVirtual Memory vers. Block or LinePage MissPage Fault Block Size: 32-64BPage Size: 4K-8KB Placement:Fully Associative Direct Mapped, N-way Set Associative Replacement: Least Recently Used LRU or Random(LRU) Write Thru or BackWrite Back

CS61C L33 Virtual Memory I (20) Garcia, Fall 2006 © UCB Notes on Page Table Solves Fragmentation problem: all chunks same size, so all holes can be used OS must reserve “Swap Space” on disk for each process To grow a process, ask Operating System If unused pages, OS uses them first If not, OS swaps some old pages to disk (Least Recently Used to pick pages to swap) Each process has own Page Table Will add details, but Page Table is essence of Virtual Memory

CS61C L33 Virtual Memory I (21) Garcia, Fall 2006 © UCB Virtual Memory Problem #1 Map every address  1 indirection via Page Table in memory per virtual address  1 virtual memory accesses = 2 physical memory accesses  SLOW! Observation: since locality in pages of data, there must be locality in virtual address translations of those pages Since small is fast, why not use a small cache of virtual to physical address translations to make translation fast? For historical reasons, cache is called a Translation Lookaside Buffer, or TLB

CS61C L33 Virtual Memory I (22) Garcia, Fall 2006 © UCB Translation Look-Aside Buffers (TLBs) TLBs usually small, typically entries Like any other cache, the TLB can be direct mapped, set associative, or fully associative Processor TLB Lookup Cache Main Memory VA PA miss hit data Trans- lation hit miss On TLB miss, get page table entry from main memory

CS61C L33 Virtual Memory I (23) Garcia, Fall 2006 © UCB Peer Instruction A. Locality is important yet different for cache and virtual memory (VM): temporal locality for caches but spatial locality for VM B. Cache management is done by hardware (HW), page table management by the operating system (OS), but TLB management is either by HW or OS C. VM helps both with security and cost ABC 1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFT 7: TTF 8: TTT

CS61C L33 Virtual Memory I (24) Garcia, Fall 2006 © UCB Peer Instruction Answer 1. Locality is important yet different for cache and virtual memory (VM): temporal locality for caches but spatial locality for VM 2. Cache management is done by hardware (HW), page table management by the operating system (OS), but TLB management is either by HW or OS 3. VM helps both with security and cost T R U E F A L S E 1. No. Both for VM and cache 2. Yes. TLB SW (MIPS) or HW ($ HW, Page table OS) 3. Yes. Protection and a bit smaller memory T R U E ABC 1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFT 7: TTF 8: TTT

CS61C L33 Virtual Memory I (25) Garcia, Fall 2006 © UCB And in conclusion… Manage memory to disk? Treat as cache Included protection as bonus, now critical Use Page Table of mappings for each user vs. tag/data in cache TLB is cache of Virtual  Physical addr trans Virtual Memory allows protected sharing of memory between processes Spatial Locality means Working Set of Pages is all that must be in memory for process to run fairly well