Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.

Slides:



Advertisements
Similar presentations
Fermi rules out EC/CMB as the X-ray emission mechanism for 3C 273 Markos Georganopoulos 1,2 Eileen T. Meyer 3 1 University of Maryland, Baltimore County.
Advertisements

Recent Advances in our Understanding of GRB emission mechanism Pawan Kumar Outline † Constraints on radiation mechanisms ♪ High energy emission from GRBs.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
References: DK, M. Georganopoulos, A. Mastichiadis 2002 A. Mastichiadis, DK 2006 DK, A. Mastichiadis, M. Georaganopoulos 2007 A. Mastichiadis, DK 2009.
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulos (advisor), UMBC/GSFC Eileen Meyer,
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Statistical Properties of GRB Polarization
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Electron thermalization and emission from compact magnetized sources
Reverse Shocks and Prompt Emission Mark Bandstra Astro
GRB B: Prompt Emission from Internal Forward-Reverse Shocks Yun-Wei Yu 1,2, X. Y. Wang 1, & Z. G. Dai 1 (俞云伟,王祥玉,戴子高) 1 Department of Astronomy,
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
GRB Afterglow Spectra Daniel Perley Astro September* 2005 * International Talk Like a Pirate Day.
Spectral Energy Correlations in BATSE long GRB Guido Barbiellini and Francesco Longo University and INFN, Trieste In collaboration with A.Celotti and Z.Bosnjak.
GRBs and Magnetic Fields Shiho Kobayashi (小林史歩) Liverpool John Moores University.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
1 Understanding GRBs at LAT Energies Robert D. Preece Dept. of Physics UAH Robert D. Preece Dept. of Physics UAH.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
A Model for Emission from Microquasar Jets: Consequences of a Single Acceleration Episode We present a new model of emission from jets in Microquasars,
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Central engine activity as seen in Naked-Eye Burst prompt emission G.Beskin, S.Karpov, S.Bondar, A.Guarnieri, C.Bartolini, G.Greco, A.Piccioni.
Great Debate on GRB Composition: A Case for Poynting Flux Dominated GRB Jets Bing Zhang Department of Physics and Astronomy University of Nevada, Las Vegas.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Radiative transfer and photospheric emission in GRB jets Indrek Vurm (Columbia University) in collaboration with Andrei M. Beloborodov (Columbia University)
Gamma-Ray Burst Polarization Kenji TOMA (Kyoto U/NAOJ) Collaborators are: Bing Zhang (Nevada U), Taka Sakamoto (NASA), POET team Ryo Yamazaki, Kunihito.
GRB Prompt radiation mechanisms X-ray LC  progenitor star properties Outline † New Scenarios & Developments for Long GRBs Prompt Emission Models New developments.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
The peak energy and spectrum from dissipative GRB photospheres Dimitrios Giannios Physics Department, Purdue Liverpool, June 19, 2012.
Gamma-rays, neutrinos and cosmic rays from microquasars Gustavo E. Romero (IAR – CONICET & La Plata University, Argentina)
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Radiation spectra from relativistic electrons moving in turbulent magnetic fields Yuto Teraki & Fumio Takahara Theoretical Astrophysics Group Osaka Univ.,
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Gamma-Ray Bursts and unmagnetized relativistic collisionless shocks Ehud Nakar Caltech.
Modeling the SED and variability of 3C66A in Authors: Manasvita Joshi and Markus Böttcher (Ohio University) Abstract: An extensive multi-wavelength.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
A new model for emission from Microquasar jets Based on works by Asaf Pe’er (STScI) In collaboration with Piergiorgio Casella (Southampton) March 2010.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
Radiation from Poynting Jets and Collisionless Shocks Edison Liang, Koichi Noguchi Shinya Sugiyama, Rice University Acknowledgements: Scott Wilks, Bruce.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Thermal electrons in GRB afterglows, or
Observation of Pulsars and Plerions with MAGIC
Les sursauts gamma : la phase des chocs internes.
Gamma-ray bursts from magnetized collisionally heated jets
Prompt Emission of Gamma-ray Bursts
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Andrei M. Beloborodov Columbia University
Presentation transcript:

Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL

Internal shock model Residual collisions in internal shock model Compared with observations (naked eye GRB b)

GRBs Multiple peaks; 10 ’ s s Rapid variability: down to ~1 ms Non-thermal (broken PL) spectra Energy peak ~ MeV Extend to >10 GeV in some EGRET bursts Compact objects Ultra relativistic expansions

Internal shocks: Compact source; relativistic, fluctuating outflow ~10 13 cm X O Meszaros 03

If MeV gamma-ray emission dominates energy, MeV gamma-rays originated from synchrotron mechanism In internal shock model, the magnetic field is in equipartition value –Characteristic frequency The outflow is optically thick to optical photons –Absorption frequency No prompt optical emission expected –in contrast with recent observational results (Waxman 03) (Li & Waxman 08) (Derishev 02)

GRB Galama et al (1999)

GRB a Vestrand et al (2005)

GRB a Vestrand et al (2006)

Optical flashes inconsistent with internal shock model? Large radius production? Simultaneity? What after gamma-ray production at small radii?

Residual collisions: direct results of internal shock model Velocity fluctuation, shell number, decreasing with time First generation collisions: gamma rays What about later residual collisions?

Simple case: merging-shell model A sequence of N>>1 equal-mass shells; separated by c X t var ; random distribution of LFs, variance<mean LF. Variance of (cm frame) velocities and (obs frame) LFs of merged groups are decreasing as: Fluctuation energy: Typical radiation frequency: Considering IC scattering MeV photons and syn absorption:

MC simulation: dropping sticking assumption Evolution of an outflow composed of equal-mass shells N=10 3, initially separated by c x 1 ms, with random Lorentz factors 300 x 3 y, where y is normally distributed with zero mean and unit standarddeviation. In each collision, 1/3 of the internal energy generated is radiated.

Observations spectral indices between the optical and gamma-ray bands are in the range of 0 – 0.5 (Yost et al 07) corresponding to a ratio of optical to gamma ray flux 1– optical energy is a tiny fraction of gamma ray energy –10 -3 Theory is in consistence

Naked-eye GRB b The energy ratio of optical to gamma-ray is –10 -3, consistent with other GRBs in Yost et al (07) The optical decay time scale, a few seconds, much longer than that in gamma-ray band, consistent with different sizes of emission regions Racusin et al (2008)

Compared to other authors One-zone model predicts gamma-optical correlation –Inconsistent with observation (Kumar & Panaitescu 08; Yu et al 08) SSC model predicts strong GeV emission by IC scattering MeV gamma rays (Kumar & Panaitescu 08) –Suggest huge radiation energy (~1E55erg!) or efficiency.

Remarks Optical flashes of GRBs are consistent with internal (residual) shocks. Inverse Compton emission is not dominant, but “smear” the pair production spectral cutoff. GRB b inconsistent with magnetic field dominated outflow model.