Laboratory spectroscopy of H3+

Slides:



Advertisements
Similar presentations
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Advertisements

Dissociative Recombination of Cold H 3 + and its Interstellar Implications  T. Oka (University of Chicago), T. R. Geballe (Gemini Observatory)  A. J.
Implications of the H H 2  H 2 + H 3 + reaction for the ortho- to para-H 3 + ratio in interstellar clouds Kyle N. Crabtree, Lt. Col. Brian A. Tom,
Benjamin McCall and Takeshi Oka University of Chicago Kenneth H. Hinkle National Optical Astronomy Observatories Thomas R. Geballe Joint Astronomy Centre.
Hot and Diffuse Gas near the Galactic Center Probed by Metastable H 3 + Thomas R. Geballe Gemini Observatory Miwa Goto Max Planck Institute for Astronomy.
Physics, Chemistry and Astronomy of H 3 + Royal Society Discussion Meeting And the Satellite Meeting January 16-18, 2006.
Near Infrared Spectroscopy of H 3 + and CH 2 + Takeshi Oka Department of Chemistry and Department of Astronomy and Astrophysics The Enrico Fermi Institute,
Benjamin McCall and Takeshi Oka University of Chicago Therese R. Huet Universite de Lille James K. G. Watson National Research Council of Canada Overtone.
Vibrational Spectroscopy
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
Space Between the Stars: Properties of the Interstellar Medium Steven R. Spangler University of Iowa.
Calculation of rovibrational H 3 + lines. New level of accuracy Slides of invited talk at Royal Society conference on H 3 + Oleg L. Polyansky 1,2 1 Institute.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
Brookhaven Science Associates U.S. Department of Energy Hot band transitions in CH 2 Kaori Kobayashi *, Trevor Sears, Greg Hall Department of Chemistry.
H 3 + : A Case Study for the Importance of Molecular Laboratory Astrophysics Ben McCall Dept. of ChemistryDept. of Astronomy.
The ground state rotational spectrum of methanol Rogier Braakman Chemistry & Chemical Engineering California Institute of Technology John C. Pearson Brian.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
T. Oka, PRL 45,531 (1980) What is H 3 + ?  2y 2x  Equilateral triangle structure  Simplest stable polyatomic molecule  No stable excited electronic.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Molecular Spectroscopy Symposium June 2013 Modeling the Spectrum of the 2 2 and 4 States of Ammonia to Experimental Accuracy John C. Pearson.
Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer L. Gottfried Department of Chemistry, The University of Chicago *Current address:
Breaking the Symmetry in Methyl Radical: High resolution IR spectroscopy of CH 2 D Melanie Roberts Department of Chemistry and Biochemistry, JILA University.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
PROGRESS & RESULTS IN THE DEVELOPMENTS OF THE SENSITIVE, COOLED, RESOLVED ION BEAM SPECTROMETER (SCRIBES) Andrew Mills, Brian Siller, Michael Porambo,
The Infrared Spectrum of CH 5 + Revisited Kyle N. Crabtree, James N. Hodges, and Benjamin J. McCall.
Copyright All rights reserved. June 25, 2015ISMS, 2015
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Observation Of Nuclear Spin Selection Rules In Supersonically Expanding Plasmas Containing H 3 + Brian Tom, Michael Wiczer, Andrew Mills, Kyle Crabtree,
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
Photoelectron Spectroscopy of Pyrazolide Anion Three Low-lying Electronic States of the Pyrazolyl Radical Adam J. Gianola Takatoshi Ichino W. Carl Lineberger.
The Origin Band of the b – a System of CH 2 Gregory Hall, and Trevor Sears Department of Chemistry Brookhaven National Laboratory Bor-Chen Chang Department.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
High-Resolution Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer Gottfried and Takeshi Oka University of Chicago Benjamin J.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Sub-Doppler Spectroscopy of H 3 + James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall.
June 18, 2008The University of Illinois 1 Continuous-wave Cavity Ringdown Study of the First Positive Band System of N 2 * Brett A. McGuire Susanna L.
N. Moazzen-Ahmadi, J. Norooz Oliaee
Molecular Spectroscopy
Analysis of bands of the 405 nm electronic transition of C3Ar
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
60th International Symposium on Molecular Spectroscopy
The Near-IR Spectrum of CH3D
CHAPTER 9 Molecules Rotations Spectra Complex planar molecules
Jacob T. Stewart and Bradley M
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Indirect Rotational Spectroscopy of HCO+
Observation of H3+ in the Diffuse Interstellar Medium
Analysis of the Rotationally Resolved Spectra to the Degenerate (
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Investigating the Cosmic-Ray Ionization Rate in the Galactic Interstellar Medium through Observations of H3+ Nick Indriolo,1 Ben McCall,1 Tom Geballe,2.
CHONG TAO, D. BRUSSE, Y. MISHCHENKO, C. MUKARAKATE and S. A. REID,
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Single molecule spectroscopy: towards precision measurements on CaH+
Fourier Transform Infrared Spectral
m1 VIBRATIONAL THEORY p.55 bonds ~ springs E = ½ kx2 m2 x is + or -
Presentation transcript:

Laboratory spectroscopy of H3+ Ben McCall Oka Ion FactoryTM University of Chicago

Motivations Astronomical Quantum Mechanical obtain frequencies for detection & use as probe Quantum Mechanical study structure of this fundamental ion refine theoretical calculations of polyatomics

H2 H2+ + H2  H3+ + H H2 Formation of H3+ H2 Proton Affinity: ~ 4.4 eV ~ 100 kcal/mol ~ D(H2) H2 e- impact laboratory plasma H2+ + H2  H3+ + H H2 cosmic ray interstellar medium Rate constant: k ~ 2 × 10-9 cm3 s-1 Exothermicity: H ~ 1.7 eV

Laboratory Plasma

Types of Molecular Spectroscopy × Electronic (visible) e × Poster: Friedrich & Alijah Rotational (microwave) Vibrational (infrared) 

Vibrational Modes of H3+ 1 2x 2y Infrared inactive Infrared active Degenerate  any linear combination

Vibrational Modes of H3+ 1 2x 2y 2+ vibrational angular momentum

Quantum Numbers for H3+ Angular momentum I — nuclear spin I=3/2 ortho I=1/2 para J — nuclear motion k = projection of J ; K = |k| l2 — vibration “l-resonance”: states with same |k-l2| mixed G  |k-l2| — rotational part of J Symmetry requirements G=3n  ortho, G3n  para Pauli: certain levels forbidden (J=even, G=0)

The 2  0 fundamental band 2 state J (J,G) {u,l} Q(1,0) R(1,0) R(1,1)l R(1,1)u P(3,3) ground state 1 2 3 G ortho para

Experimental work on 2  0 Initial Detection (Oka 1980) search over two years, over 500 cm-1 15 lines, few percent deep assigned by Watson overnight 2 = 2521 cm-1 et al. 2000 Lindsay 217 Continuous scan 3000 – 3600 cm-1 Majewski et al. 1994 206 emission FTIR et al. 2000 Joo 207 Lowest frequency 1546.901 cm-1 McKellar & Watson 1998 FTIR absorption wide-band et al. 1994 Uy 151 J=15 Oka 1980 15 Majewski et al. 1987 113 emission FTIR J=9 Nakanaga et al. 1990 absorption FTIR et al. 1984 Watson 46 Oka 1981 30

The 2  0 band as a probe of H3+ Laboratory H3+ electron recombination rate (Amano 1988) spin conversion of H3+ in reactions (Uy et al. 1997) ambipolar diffusion in plasmas (Lindsay, poster) Astronomy probe of planetary ionospheres (Connerney, Miller) confirmation of interstellar chemistry (Herbst) measurements of interstellar clouds (Geballe)

The fundamental band Spacing illustrates large rotational constants Q No R(0) line  three equivalent spin 1/2 fermions  equilateral triangle geometry R(J)u P(J)u Spacing illustrates large rotational constants (B ~ 44 cm-1) R(J)l 2:1 intensity ratios reflect spin statistical weights (ortho/para) T=400 K

Understanding the 2 Spectrum For low energies, use perturbation approach: E” = BJ(J+1) + (C-B)K2 - DJKJ(J+1)K2 + ... E’ = 2 + B’J’(J’+1) + (C’-B’)K’2 - 2C’K’l + ... use observed transitions to fit molecular constants For higher vibrational energies, this approach completely breaks down Variational calculations based on an ab initio potential energy surface!

Variational Calculations Zero Point Vibrational Energy  R R

Vibrational Band Types Combination: 1 + 22  0 Overtones: n2  0 Hot band: 22  2 Forbidden: 1  0 Fundamental: 2  0

Vibrational Overview 2  0 22  0 32  0 22  2 42  0 1  2 52  0 1+22  0 21+2  0 1+2  0 1  2 22  2 1+2  1 32  2 Mention more power leads to higher sensitivity.

Vibrational Overview 2  0 22  0 32  0 22  2 42  0 1  2 Ti:Sapphire (1 W) FCL (30 mW) Diodes (8 mW) 22  0 32  0 42  0 52  0 D.F. (LiNbO3) (0.1 mW) D.F. (LiIO3) (20 µW) 1+22  0 21+2  0 1+2  0 1  2 22  2 1+2  1 32  2 Mention more power leads to higher sensitivity.

Vibrational Overview 2  0 22  0 32  0 22  2 42  0 1  2 Ti:Sapphire (1 W) FCL (30 mW) Diodes (8 mW) 22  0 32  0 42  0 52  0 D.F. (LiNbO3) (0.1 mW) D.F. (LiIO3) (20 µW) 1+22  0 21+2  0 1+2  0 1  2 22  2 1+2  1 32  2 Mention more power leads to higher sensitivity.

Hot Bands At 600 K, ~200 times weaker than fundamental He dominated discharge  only 50 times weaker Bawendi et al. (1990) 72 lines of 222  2 14 lines of 220  2 21 lines of 1+2  1 Variational calculations essential in assignment Sutcliffe 1983; Miller & Tennyson 1988, 1989

First Overtone Band: 22  0 First overtone (22  0) usually orders of magnitude weaker than fundamental In H3+, only about 7 times weaker Discovery: (in hindsight) Majewski et al. (1987) Jupiter (Trafton et al. 1989, Drossart et al. 1989) Assigned by Watson (with aid of hot bands) Majewski et al. (1989) – 47 transitions, FTIR Xu et al. (1990) – transitions observed in absorption

Absolute Energy Levels 1 222 Q(1,1) nP(2,2) Fundamental: G = 0 Hot bands: G = 0 1 2 Overtone band: G = ±3 (n  G = -3, t  G = +3) P(2,1) State that without the overtone, you only get energies in G-stacks. Absolute energy levels 1 2 E12 G=0 G=1 G=2 G=3

Second Overtone Band: 32  0 ~ 200 times weaker than fundamental Band origin ~ 7000 cm-1 Tunable diode lasers Lee et al. (1991), Ventrudo et al. (1994) 15 transitions observed Assigned based on variational calculations Miller & Tennyson (1988, 1989)

Forbidden Band 1  0 1 mode totally symmetric  infrared inactive 1  0 very forbidden since 1 & 2 not coupled First mixing term: “Birss resonance” mixes levels in 1 & 2 with same J, G=3 effective for accidental degeneracies (fairly high J) Xu et al. (1992) 9 lines 1 = 3178 cm-1 Lindsay et al. (2000) 10 new lines 1 state J=5 2 state G=2 G=5 J=5 ground state J=4

Forbidden Band 1+2  2 Not as forbidden as 1  0 anharmonicity of potential mixes 1+2 with other states (e.g. 222) 1+2  2 can “borrow” intensity from allowed bands (e.g. 222  2) Xu et al. (1992) observed 21 lines

Combination Bands 1+222  0 Highest energy band Weakest allowed band 270 times weaker than 2 Tunable diode laser 7780 – 8168 cm-1

Observed Spectrum 28 transitions of 1+222  0 2 of 21+21  0

Table of Results Predictions from J. K. G. Watson

Table of Results Predictions from J. K. G. Watson

1+222 Energy Levels JG* <l2>

Breaking the Barrier to Linearity  Mention singularity resulting from moment of inertia vanishing.

Future Prospects Improvements in Theory Experimental Advances Hyperspherical coordinates for linearity (Watson) Relativistic effects (Jaquet) Non-adiabatic effects (Polyansky & Tennyson 1999) Experimental Advances Titanium:Sapphire laser, Dye laser New techniques (heterodyne, cavities?) 42  0, 52  0 on the horizon ... 102  0 in the future??

Acknowledgements Oka J. K. G. Watson Fannie and John Hertz Foundation NSF NASA

Laboratory and astronomical spectroscopy progressing together! Column Density of H3+ (concentration) × (path length)  Column Density Laboratory: 1011 cm-3 1014 cm-2 × = 103 cm Molecular Cloud: 10-4 cm-3 1014 cm-2 × = 1018 cm Laboratory and astronomical spectroscopy progressing together!