Chapter 2 (part 3) Bayesian Decision Theory Discriminant Functions for the Normal Density Bayes Decision Theory – Discrete Features All materials used.

Slides:



Advertisements
Similar presentations
Pattern Recognition and Machine Learning
Advertisements

2 – In previous chapters: – We could design an optimal classifier if we knew the prior probabilities P(wi) and the class- conditional probabilities P(x|wi)
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Chapter 2: Bayesian Decision Theory (Part 2) Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Pattern Classification. Chapter 2 (Part 1): Bayesian Decision Theory (Sections ) Introduction Bayesian Decision Theory–Continuous Features.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Chapter 2: Bayesian Decision Theory (Part 2) Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density.
Pattern Classification Chapter 2 (Part 2)0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Linear Discriminant Functions Wen-Hung Liao, 11/25/2008.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 1: Introduction to Pattern Recognition
Bayesian Decision Theory Chapter 2 (Duda et al.) – Sections
Parameter Estimation: Maximum Likelihood Estimation Chapter 3 (Duda et al.) – Sections CS479/679 Pattern Recognition Dr. George Bebis.
Chapter 5: Linear Discriminant Functions
Chapter 4 (Part 1): Non-Parametric Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Chapter 2: Bayesian Decision Theory (Part 1) Introduction Bayesian Decision Theory–Continuous Features All materials used in this course were taken from.
Pattern Classification, Chapter 3 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 6: Multilayer Neural Networks
Chapter 3 (part 3): Maximum-Likelihood and Bayesian Parameter Estimation Hidden Markov Model: Extension of Markov Chains All materials used in this course.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
1 lBayesian Estimation (BE) l Bayesian Parameter Estimation: Gaussian Case l Bayesian Parameter Estimation: General Estimation l Problems of Dimensionality.
Chapter 4 (part 2): Non-Parametric Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Bayesian Estimation (BE) Bayesian Parameter Estimation: Gaussian Case
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 3 (part 1): Maximum-Likelihood & Bayesian Parameter Estimation  Introduction  Maximum-Likelihood Estimation  Example of a Specific Case  The.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
METU Informatics Institute Min 720 Pattern Classification with Bio-Medical Applications PART 2: Statistical Pattern Classification: Optimal Classification.
0 Pattern Classification, Chapter 3 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda,
Pattern Recognition: Baysian Decision Theory Charles Tappert Seidenberg School of CSIS, Pace University.
Principles of Pattern Recognition
Speech Recognition Pattern Classification. 22 September 2015Veton Këpuska2 Pattern Classification  Introduction  Parametric classifiers  Semi-parametric.
ECE 8443 – Pattern Recognition LECTURE 03: GAUSSIAN CLASSIFIERS Objectives: Normal Distributions Whitening Transformations Linear Discriminants Resources.
Bayesian Decision Theory (Classification) 主講人:虞台文.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 3: Maximum-Likelihood Parameter Estimation l Introduction l Maximum-Likelihood Estimation l Multivariate Case: unknown , known  l Univariate.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Covariance matrices for all of the classes are identical, But covariance matrices are arbitrary.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 04: GAUSSIAN CLASSIFIERS Objectives: Whitening.
ECE 471/571 – Lecture 3 Discriminant Function and Normal Density 08/27/15.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides* were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification Chapter 2(Part 3) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Lecture 2. Bayesian Decision Theory
CS479/679 Pattern Recognition Dr. George Bebis
Probability theory retro
Pattern Classification, Chapter 3
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Recognition and Machine Learning
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Hairong Qi, Gonzalez Family Professor
Presentation transcript:

Chapter 2 (part 3) Bayesian Decision Theory Discriminant Functions for the Normal Density Bayes Decision Theory – Discrete Features All materials used in this course were taken from the textbook “Pattern Classification” by Duda et al., John Wiley & Sons, 2001 with the permission of the authors and the publisher

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section 2. 2 Discriminant Functions for the Normal Density We saw that the minimum error-rate classification can be achieved by the discriminant function g i (x) = ln P(x |  i ) + ln P(  i ) Case of multivariate normal 6

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section 2. 3 Case  i =  2. I ( I stands for the identity matrix) 6

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section 2. 4 –A classifier that uses linear discriminant functions is called “a linear machine” –The decision surfaces for a linear machine are pieces of hyperplanes defined by: g i (x) = g j (x) 6

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section 2. 6 –The hyperplane separating R i and R j always orthogonal to the line linking the means! 6

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section 2. 9 Case  i =  (covariance of all classes are identical but arbitrary!) –Hyperplane separating R i and R j (the hyperplane separating R i and R j is generally not orthogonal to the line between the means!) 6

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section Case  i = arbitrary –The covariance matrices are different for each category (Hyperquadrics which are: hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids, hyperhyperboloids) 6

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section Bayes Decision Theory – Discrete Features Components of x are binary or integer valued, x can take only one of m discrete values v 1, v 2, …, v m Case of independent binary features in 2 category problem Let x = (x 1, x 2, …, x d ) t where each x i is either 0 or 1, with probabilities: p i = P(x i = 1 |  1 ) q i = P(x i = 1 |  2 ) 9

Dr. Djamel BouchaffraCSE 616 Applied Pattern Recognition, Chapter 2, Section The discriminant function in this case is: 9