Dec 2005Jean-Sébastien GraulichSlide 1 Improving MuCal Design o Why we need an improved design o Improvement Principle o Quick Simulation, Analysis & Results.

Slides:



Advertisements
Similar presentations
ATLAS Tile Calorimeter Performance Henric Wilkens (CERN), on behalf of the ATLAS collaboration.
Advertisements

1 Acceptance & Scraping Chris Rogers Analysis PC
Plastic Scintillator Option for DB a simulation study by Maxim Gonchar, Yury Gornushkin and Dmitry Naumov JINR, Dubna, Russia Collaboration Meeting January.
1 Progress report on Calorimeter design comparison simulations MICE detector phone conference Rikard Sandström.
Jin Huang Los Alamos National Lab.  Cited from March collaboration Meeting EC group Internal Communication Jin Huang 2 Preshower ID power drop significantly.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
Anne Dabrowski Northwestern University Collaboration Meeting 22 nd February 2005 Update Kmu3 Branching Ratio measurement A. Dabrowski, February
MICE the Muon Ionization Cooling Experiment Emilio Radicioni, INFN EPS-HEP Aachen 2003.
Summary of downstream PID MICE collaboration meeting Fermilab Rikard Sandström.
1 EMCal & PID Rikard Sandström Universite de Geneve MICE collaboration meeting 26/6-05.
1 EMCal simulations MICE Video Conference Rikard Sandström Geneva University e MeV.
30 March Global Mice Particle Identification Steve Kahn 30 March 2004 Mice Collaboration Meeting.
1 Downstream PID update Rikard Sandström PID phone conference
Mar 31, 2005Steve Kahn -- Ckov and Tof Detector Simulation 1 Ckov1, Ckov2, Tof2 MICE Pid Tele-Meeting Steve Kahn 31 March 2005.
1 PID Detectors & Emittance Resolution Chris Rogers Rutherford Appleton Laboratory MICE CM17.
1 PID status MICE Analysis phone conference Rikard Sandström.
1 G4MICE studies of PID transverse acceptance MICE video conference Rikard Sandström.
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
1 G4MICE downstream distributions G4MICE plans Rikard Sandström Universite de Geneve MICE collaboration meeting 27/6-05.
Software parallel session summary MICE collaboration meeting INFN, Frascati 27/6-05.
DAQ WS03 Sept 2006Jean-Sébastien GraulichSlide 1 Report on FEE for PID o Reminder o TOF o EMCAL o Summary Jean-Sebastien Graulich, Geneva.
Y. Karadzhov MICE Video Conference Thu April 9 Slide 1 Absolute Time Calibration Method General description of the TOF DAQ setup For the TOF Data Acquisition.
1 Progress report on Calorimeter design comparison simulations MICE detector phone conference Rikard Sandström.
1 TPG digitization improvements Progress description Rikard Sandström Geneva University Software parallel session 31 Mars -04 CERN.
28 April 2005Ckov1 Update -- S. Kahn1 Update to the Upstream Cherenkov  -  Separation Steve Kahn Brookhaven National Lab May 2, 2005 Detector Tele-Meeting.
Jun 27, 2005S. Kahn -- Ckov1 Simulation 1 Ckov1 Simulation and Performance Steve Kahn June 27, 2005 MICE Collaboration PID Meeting.
27 Jun 2005S. Kahn -- Tof/Ckov Status1 Status of TOF and Ckov Sub- packages in G4Mice Steve Kahn 27 June 2005.
MICE VC March 2009Jean-Sebastien GraulichSlide 1 EMR Status o Introduction o News o Detector Design o Simulations o Responsibilities o Plan Jean-Sebastien.
1 EMCal design MICE collaboration meeting Fermilab Rikard Sandström.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Direct Photon HBT and future perspectives for dileptons in STAR Evan Finch-Yale University RHIC-AGS Users’ Meeting 2008.
SHMS Optics and Background Studies Tanja Horn Hall C Summer Meeting 5 August 2008.
Feb 10, 2005 S. Kahn -- Pid Detectors in G4MicePage 1 Pid Detector Implementation in G4Mice Steve Kahn Brookhaven National Lab 10 Feb 2005.
Results from Step I of MICE D Adey 2013 International Workshop on Neutrino Factories, Super-beams and Beta- beams Working Group 3 – Accelerator Topics.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
K charged meeting 10/11/03 K tracking efficiency & geometrical acceptance :  K (p K,  K )  We use the tag in the handle emisphere to have in the signal.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
1 Calorimeter in G4MICE Berkeley 10 Feb 2005 Rikard Sandström Geneva University.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
PID simulations Rikard Sandström University of Geneva MICE collaboration meeting RAL.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
- MICE - The Muon Ionization Cooling Experiment Jean-Sebastien Graulich, Univ. Genève o Introduction: Aims And Concept o Design o Infrastructure: Hall,
RF background, update on analysis Rikard Sandström, Geneva University MICE Analysis phone conference, October 30, 2007.
4 May 2006 First look to the Ke2 decay ● Interesting for the Ke2/k m 2 ratio ● BR(K ±  e n ) = (1.55 ±0.07)10 -5 ● Large radiative decay BR(K ±  e n.
M. Bonesini - CM 22 RAL October 081 TOF0 status M. Bonesini Sezione INFN Milano Bicocca.
Calorimeter design & simulations for Stage I Rikard Sandström University of Geneva MICE PID phone conference
An Alternative Design based on Inverse Beta Detection Jim Lund Sandia National Laboratories History The immediate future The 2-3 yr. time frame The beehive.
PoGO_G4_ ppt1 Study of BGO/Collimator Optimization for PoGO August 8th, 2005 Tsunefumi Mizuno, Hiroshima University/SLAC
Paolo Massarotti Kaon meeting March 2007  ±  X    X  Time measurement use neutral vertex only in order to obtain a completely independent.
Preliminary Design of Trigger System for BES III Zhen’an LIU Inst of High Energy Physics,Beijing Oct
PAC questions and Simulations Peter Litchfield, August 27 th Extent to which MIPP/MINER A can help estimate far detector backgrounds by extrapolation.
M. Ellis - MICE Collaboration Meeting - Wednesday 27th October Sci-Fi Tracker Performance Software Status –RF background simulation –Beam simulation.
BESIII offline software group Status of BESIII Event Reconstruction System.
Status of the measurement of K L lifetime - Data sample (old): ~ 440 pb -1 ( ) - MC sample: ~125 pb -1 ( mk0 stream ) Selection: standard tag (|
Mark Rayner – Analysis SessionCM25, 4 November The TOF detectors: Beyond particle identification Mark Rayner The University of Oxford MICE CM25.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
IPHC, Strasbourg / GSI, Darmstadt
Update on Trigger simulation
Electromagnetic Physics Working Group discussion
Tracking(1) Kp2 decay-in-flight BG simulation
GLAST LAT tracker signal simulation and trigger timing study
MICE Collaboration Meeting
Neutron detectors for the NMX instrument
Jin Huang Los Alamos National Lab
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Presentation transcript:

Dec 2005Jean-Sébastien GraulichSlide 1 Improving MuCal Design o Why we need an improved design o Improvement Principle o Quick Simulation, Analysis & Results o Pros & Cons

Dec 2005Jean-Sébastien GraulichSlide 2 Why an improved design  CKOV2 funding is uncertain  EmCal mu+/e+ is not straightforward Using many parameters with Complicate (Neural Net) Analysis Stability vs MICE configuration ? Systematics ? Separation Requires P and TOF measurement -> How do we do in Stage I ? (No P measurement !) Precise Energy Measurement -> ADC Problem  EmCal (Kloe) design is optimized for higher energy muons 200 MeV/c muons are stopped in the middle Inhomogeneous material -> spread in muon range -> spread in visible energy

Dec 2005Jean-Sébastien GraulichSlide 3 Improvement Principle  Start with a rather thin high Z material layer Stop primary positrons and convert them into gammas and soft e+/e-  Several layers of plastic scintillators (low Z) Large Muon range -> long tracks with large energy deposit/layer Soft e+/e- -> scattered hits with small energy deposit Nearly Transparent to gammas (low Z)  Problem with low energy muons (<120 MeV/c) They stop in the first (high Z) layer Maybe TOF can help e+e+e+e+ µ+µ+µ+µ+

Dec 2005Jean-Sébastien GraulichSlide 4 Quick Simulation  First layer (Converter) = 1 Kloe layer (4 cm thick, 8 cm wide)  11 Layers of scintillator, 2 cm thick, 8 cm wide (15 slabs/layer)  A passive plastic layer has been introduced : bad idea ! This kills the muon detection efficiency below 150 MeV/c Mu Efficiency is estimated only above this threshold  Many thanks to Rikard 162 MeV/c Muon Kloe 4 cm Passive 6 cm

Dec 2005Jean-Sébastien GraulichSlide 5 Simulated Beam  Using an old Turtle beam (small divergence) Same as Rikard used 3 month ago  Small number of positrons 256 e +, only 199 reach MuCal in a 20 ns time window µ+ over 150 MeV/c

Dec 2005Jean-Sébastien GraulichSlide 6 Low thr: 200 keV High thr: 2.5 MeV Quick Analysis  No realistic digitization yet Using True Visible Energy with 10% resolution  No charge measurement: Only two level discriminator: low/high signal No clustering, signal sharing ignored. - Muons - Positrons

Dec 2005Jean-Sébastien GraulichSlide 7 Quick Analysis  Looking at Track Length Counting only high level hits Taking the maximum length of continuous track X,Y Segmentation not used, the highest hit in the layer is taken  Looking at low level hits Just count the layers where there is a low level hit and no high level hit Again X,Y Segmentation not used  Rem: X,Y Segmentation is used only for digitization, not for analysis Muons have long tracks and no low level hits e + have short tracks and many low level hits

Dec 2005Jean-Sébastien GraulichSlide 8 Quick results  This can be reduced to one single parameter Continuous intense track length index = High level track length divided by the number of sparse low level hits Cut at 1

Dec 2005Jean-Sébastien GraulichSlide 9 Results Summary  Muon efficiency (over 150 MeV/c): 99.7 %  Positron rejection efficiency (all energies): 98.4 %  Purity of the muon sample: %  Main Losses: mu decay either in flight or in the time window (20 ns)

Dec 2005Jean-Sébastien GraulichSlide 10 Background study  Main background: Coincidence with muon decay Either the one just arriving or a previous one Main effect: The continuity of the track is affected; a muon is misidentified as a positron Small bias (decay in flight probability slightly depends on the momentum) Higher order effect: The decay product piles up with a positron, producing a fake track. Highly suppressed by geometric factor if segmentation is used in the calculation of the track length  Case studied: A muon piles up with its own decay product Studied by increasing the time window at the digitization level: 20 ns -> 100 ns  Results: Mu Efficiency drops to 97 %

Dec 2005Jean-Sébastien GraulichSlide 11 Pros and Cons  Easy mu/e separation 1 parameter with physics signification  No need for CKOV2  Simple, “cheap” technology  No need for good energy resolution  Similar design can do mu/pi separation in Stage I (ask Rikard)  Allow triggering on high P muons (in phase w RF)  Need more Pmts  Who can build it?  Need help to find more cons…