Math 143 Section 7.1 The Ellipse

Slides:



Advertisements
Similar presentations
Ellipses Date: ____________.
Advertisements

10.1 Parabolas.
10.4 Ellipses p An ellipse is a set of points such that the distance between that point and two fixed points called Foci remains constant d1 d2.
Section 11.6 – Conic Sections
Section 9.1 The Ellipse. Overview Conic sections are curves that result from the intersection of a right circular cone—think ice cream cone—and a plane—think.
Section 9.2 The Hyperbola. Overview In Section 9.1 we discussed the ellipse, one of four conic sections. Now we continue onto the hyperbola, which in.
Section 9.1 The Ellipse.
Math 143 Section 7.2 Hyperbolas
Table of Contents Ellipse - Finding the Equation Recall that the two equations for the ellipse are given by... Horizontal EllipseVertical Ellipse.
Hyperbola – a set of points in a plane whose difference of the distances from two fixed points is a constant. Section 7.4 – The Hyperbola.
Ellipses Objective: Be able to get the equation of an ellipse from given information or the graph Be able to find the key features of and graph an ellipse.
Ellipses Unit 7.2. Description Locus of points in a plane such that the sum of the distances from two fixed points, called foci is constant. P Q d 1 +
Questions over Assignment  3R- One more thing we need to do on 8, 9, & 10.
9.1.1 – Conic Sections; The Ellipse
Section 9-5 Hyperbolas. Objectives I can write equations for hyperbolas I can graph hyperbolas I can Complete the Square to obtain Standard Format of.
Hyperbolas 9.3. Definition of a Hyperbola A hyperbola is the set of all points (x, y) in a plane, the difference of whose distances from two distinct.
Advanced Geometry Conic Sections Lesson 4
Unit #4 Conics. An ellipse is the set of all points in a plane whose distances from two fixed points in the plane, the foci, is constant. Major Axis Minor.
Conic Sections - Hyperbolas
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Chapter 7 Conic Sections Copyright © 2014, 2010, 2007 Pearson Education, Inc The Ellipse.
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Mat 151 Chapter Parabolas.
Ax 2 + Bxy + Cy 2 + Dx + Ey + F=0 General Equation of a Conic Section:
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
Ellipses Part 1 Circle/Ellipse Quiz: March 9 Midterm: March 11.
Ellipses Topic 7.4. Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
Ellipses Topic Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
10.3 The Ellipse.
Conics This presentation was written by Rebecca Hoffman.
The Ellipse.
MATT KWAK 10.2 THE CIRCLE AND THE ELLIPSE. CIRCLE Set of all points in a plane that are at a fixed distance from a fixed point(center) in the plane. With.
Warm up Write the standard form of the equation: Then find the radius and the coordinates of the center. Graph the equation.
Precalculus Unit 5 Hyperbolas. A hyperbola is a set of points in a plane the difference of whose distances from two fixed points, called foci, is a constant.
Hyperbolas. Hyperbola: a set of all points (x, y) the difference of whose distances from two distinct fixed points (foci) is a positive constant. Similar.
Ellipse Notes. What is an ellipse? The set of all points, P, in a plane such that the sum of the distances between P and the foci is constant.
Graph and write equations of Ellipses.
Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Copyright © 2011 Pearson Education, Inc. The Ellipse and the Circle Section 7.2 The Conic Sections.
Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and F2) called foci is constant.
8.3 Ellipses May 15, Ellipse Definition: Is the set of all points such that the sum of the distances between the point and the foci is the same.
Making graphs and using equations of ellipses. An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
1 st Day Section A circle is a set of points in a plane that are a given distance (radius) from a given point (center). Standard Form: (x – h) 2.
Section 10.4 Last Updated: December 2, Hyperbola  The set of all points in a plane whose differences of the distances from two fixed points (foci)
Hyperbolas Date: ______________. Horizontal transverse axis: 9.5 Hyperbolas x 2x 2 a2a2 y2y2 b2b2 –= 1 y x V 1 (–a, 0)V 2 (a, 0) Hyperbolas with Center.
10.2 Ellipses. Ellipse – a set of points P in a plane such that the sum of the distances from P to 2 fixed points (F 1 and F 2 ) is a given constant K.
Date: 9.1(a) Notes: The Ellipse Lesson Objective: Graph and write the equa- tions of ellipses in standard form. CCSS: G.GPE.3 You will need: colored pens.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Get out Ellipse: Notes Worksheet and complete #2 & #3 (Notes Sheet From Yesterday)
10.2 Ellipses.
Ellipses Date: ____________.
30. Ellipses.
Graph and Write Equations of Elllipses
MATH 1330 Section 8.2b.
Chapter 9 Conic Sections.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Ellipse Notes.
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
9.4 Graph & Write Equations of Ellipses
Sullivan Algebra and Trigonometry: Section 11.3
distance out from center distance up/down from center
Section 10.3 – The Ellipse a > b a – semi-major axis
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Section 11.6 – Conic Sections
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
Ellipse.
Presentation transcript:

Math 143 Section 7.1 The Ellipse

Ellipse An ellipse is a set of points in a plane the sum of whose distances from two fixed points, called foci, is a constant. For any point P that is on the ellipse , d2 + d1 is always the same. P d2 d1 F1 F2

Standard Form Equation of an Ellipse (x – h)2 (y – k)2 + = 1 a2 b2 The center of the ellipse is at the point (h, k) a is ½ the length of the horizontal axis b is ½ the length of the vertical axis Where c is the distance from the center to a focus point. c2 = a2 – b2 if a2 > b2 c2 = b2 – a2 if b2 > a2

Graphing an Ellipse Graph: x2 y2 4 9 + = 1 Center: (0, 0) + = 1 Center: (0, 0) V Minor Axis: 4 (horizontal) F Major Axis: 6 (vertical) Vertices: (0, 3) and (0, - 3) F c2 = 9 – 4 = 5 V c = Ö5 = 2.24 Foci: (0, 2.24) and (0, -2.24)

Graphing an Ellipse Graph: (x – 2)2 (y + 1)2 16 9 + = 1 + = 1 Center: (2, -1) Major Axis: 8 (horizontal) Minor Axis: 6 (vertical) V Vertices: (6, -1) and (-2, -1) V c2 = 16 – 9 = 7 c = Ö 7 = 2.65 Foci: (4.65, -1) and (-0.65, -1)

Finding an Equation of an Ellipse Find the equation of the ellipse given that Vertices are (0, 4), (0, -4) Foci are (0, 3), (0, -3) V Center: (0, 0) Major Axis: 8 (vertical) b = 4 and b2 = 16 Since c = 3, and c2 = b2 – a2 9 = 16 – a2 a2 = 7 V Equation: (x – h)2 (y – k)2 a2 b2 + = 1 x2 y2 7 9 + = 1

Finding an Equation of an Ellipse Find the equation of the ellipse given the graph Then locate the foci of the ellipse Center: (-1, 1) V1 Major Axis: 6 (horizontal), so a = 3 Minor Axis: 2 (vertical), so b = 1 Equation: (x + 1)2 (y – 1)2 9 1 + = 1 c2 = a2 – b2 V2 c2 = 9 – 1 = 8 c = Ö8 = 2.83 (x – h)2 (y – k)2 a2 b2 + = 1 Foci are (1.83, 1), (-3.83, 1)

Finding an Equation of an Ellipse Find the equation of the ellipse given that Foci are (-2, 0), (2, 0) y-intercepts: -3, 3 Major Axis must be horizontal since the foci are on the major axis Center: (0, 0) c= 2 and b = 3 F F c2 = a2 – b2 4 = a2 – 9 a2 = 13 Equation: (x – h)2 (y – k)2 a2 b2 + = 1 x2 y2 13 9 + = 1

Converting an Equation Convert the following equation to standard form Then graph the ellipse and locate its foci 9x2 + 25y2 – 36x + 50y – 164 = 0 9(x2 – 4x + ___ ) + 25(y2 + 2y + ___) = 164 + ___ + ___ 4 1 36 25 9(x – 2)2 + 25(y + 1)2 = 225 (x – 2)2 (y + 1)2 + = 1 25 9 c2 = 25 – 9 = 16 c = 4 F F Foci: (-2, -1) and (6, -1)

Application Problems A semielliptical archway has a height of 20 feet at its midpoint and a width of 50 feet. Can a truck that is 14 ft high and 10 ft wide drive under the archway without moving into the oncoming lane? P The real question is “What is the value of y at point P when x = 10” ? 20 10 Equation of the ellipse: x2 y2 + = 1 50 625 400 16x2 + 25y2 = 10,000 Yes, the truck will be able to drive under the archway without moving into the oncoming lane. When x = 10, 1600 + 25y2 = 10,000 25y2 = 8400 y2 = 336 y = 18.3