HYP06 Next generation hypernuclear gamma-ray spectrometer: Hyperball-J Koike, Takeshi Tohoku University Introduction Hyperball-J requirements Array geometry.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Advanced GAmma Tracking Array
GEANT4 Simulations of TIGRESS
Hitoshi Sugimura Kyoto University (For E03 collaboration)
Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I.
High granularity to reduce the effect of the “prompt flash” radiation Polarization sensitivity Imaging capabilities for background suppression DESPEC (DEcay.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
AGATA Introduction John Simpson Nuclear Physics Group.
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
Oct. 13 th ray spectroscopy study of and Yue Ma Department of Physics Tohoku University.
N_TOF fission data of interest for ADS
Institute for Safety Research Dávid Légrády IP-EUROTRANS ITC2 Development of a Neutron Time-of-Flight Source at the ELBE Accelerator ELBE Neutron source.
J-PARC でのハイパー核ガンマ線分 光実験に向けた Hyperball-J の建設状 況 東北大理、 KEK 、 セイコー EG&G 、 富士電機システム ズ 白鳥昂太郎、 田村裕和、 小野浩、 笠見勝裕、 小池武志、 竹内孝行、 千賀信幸、 春山富義、 保川幸雄 and the Hyperball-J.
Wednesday, May 9 th 2007Torsten Beck Fast Pulse Shape Analysis for AGATA-Germanium- Detectors Torsten BeckWednesday, 9. Mai 2007 Student seminar Wednesday,
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
The Design of Barrel Electromagnetic Calorimeter (BEMC) October Lu Jun-guang.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
SksMinus status SKS meeting 2008/1/18 白鳥昂太郎. SksMinus setup SksMinus  STOF : Time-of-flight  SAC & BAC: K - beam veto and  - ID (n=1.03)  SDC1~4 :
Status of Hybrid target R&D at KEK-LINAC T.Takahashi Hiroshima University LCWS/ILC10 Beijing Collaborators: V. Strakhovenko O. Dadoun, R. Chehab, A.Variola,
Hypernuclear  Spectroscopy Experiments and Waveform Readout of Germanium Detectors H. Tamura Tohoku Univ. 1. Present Status and Hyperball2 2. DAY-1 experiment.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Measurement of Ge detector by New cooling KEK Apr 25 th K.Shirotori.
SksMinus status SKS meeting 2007/5/10 白鳥昂太郎. SksMinus setup SksMinus  STOF : Time-of-flight  SAC & BAC: K - beam veto and  - ID (n=1.03)  (SFV : K.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Measurement of Ge detector by New cooling system KEK May 30 th K.Shirotori.
DESPEC A Algora IFIC (Valencia) for the Ge array working group.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
Physics Colloquium Ⅱ Shibata Laboratory OKA, Hiroki Nucleosyntheses studied with a Van de Graaff Accelerator [Contents] 1. Objective.
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Development of a Segmented Planar Germanium Imaging Detector
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Tracking Background GRETINA Software Working Group Meeting September 21-22, 2012, NSCL MSU I-Yang Lee Lawrence Berkeley National Laboratory.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Photon Detector with PbWO 4 Crystals and APD Readout APS “April” Meeting in Denver, CO on May 4, 2004 presented by Kenta Shigaki (Hiroshima University,
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
Steven Moon, A.J. Boston, H. Boston, J. Cresswell, L. Harkness, D. Judson, P.J. Nolan PSD9, Aberystwyth, Wales th September 2011 Compton imaging.
Present status of production target and Room design Takashi Hashimoto, IBS/RISP 2015, February.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
Institute of Basic Science Rare Isotope Science Project PANGEA P hoton detector system for A stro-science and N uclear physics with GE rmanium A rray 2015.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
WP 22 – SciFi Development and Characterisation of Inorganic Scintillating Fibers Made of LuAG:Ce and LYSO:Ce S. Diehl 1, R. Novotny 1, Aubry Nicolas 2.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
Advanced Gamma Tracking Array Andy Boston The Advanced Gamma Tracking Array
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
Status of ULE-HPGe Experiment for WIMP Search in YangYang
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
High rate capability of gas ionization chamber with flash ADC
On behalf of the GECAM group
Upgrade of LXe gamma-ray detector in MEG experiment
The First
Preliminary Compton Imaging results of the AGATA C001 detector
Upgrade of LXe gamma-ray detector in MEG experiment
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
BESIII EMC electronics
MEG II実験 液体キセノン検出器の建設状況
Background Simulations at Fermilab
Presentation transcript:

HYP06 Next generation hypernuclear gamma-ray spectrometer: Hyperball-J Koike, Takeshi Tohoku University Introduction Hyperball-J requirements Array geometry Mechanical cooling PWO suppressor

HYP06 Physics motivation & experimental overview –H. Tamura (Tuesday) Hyperball2 (E566) results –Y. Ma (Session A1) Spin-flip production at J- PARC –M. Ukai (Session A1) SKS spectrometers for E13 J-PARC –K. Shirotori (Poster session) K1.8 beam line at J-PARC Hyperball related talks By M.Ukai

HYP06 Evolution of Hyperball HyperballHyperball2 Hyperball-J (Wall) Hyperball-J (Ball) # of Ge det (S14,C6) 3230 Target distance10/15cm15cm 13cm << 21cm 18cm,19.5cm Detector typeSingle(60%) Clover(20%X4) Single(70%) # of channels Total photo peak 1Mev 2.3%(15) ~4%6.5%*4.8%* Efficiency measured/simulated for a point source *(simulated values by Geant4 ) X 0.82

HYP06  -ray spectrometer required of J-PARC under intense K beam Efficiency,  –  -  coincidence →  2 Resolution –Intrinsic →S/N –Neutron damage →line shape Energy deposit rate –0.5TeV/sec << Fast suppression –from BGO (1  s) to PWO (100ns) Resolving of pile-up & baseline restoration –Wave form analysis Energy (keV)

HYP06 Hyperball-J : Ge detector base unit PWO crystal Ge crystal Pulse Tube PMT Compressor Suppressor Case Magnetic shield Case Ge detector Transistor Reset (High energy deposit rate) N-type (Radiation damage resistance) Relative eff. 70% Pulse Tube refrigerator (Minimization of neutron damage effect) Background suppressor PWO crystal (fast decay component) Cooling unit (Increasing light yield) PMT Magnetic shield (SKS fringing filed)

HYP06 Wall arrangement Ball arrangement Two array geometries: Wall vs Ball

HYP06 Wall configuration (Half of an array is shown.) Compact placement of Ge detectors Large efficiency Angular sensitivity High configurability Simpler design geometry Possible with slim Ge design (mechanical cooling) Complex suppression scheme Less degree of symmetry

HYP06 Ball configuration I (# of det. 30, R=18cm, 19.5cm ) Designed by N. Chiga High symmetry Standard configuration Less restriction on the size of detector Better low energy (Compton) background suppression Simpler suppression scheme Less efficient Non flexible geometry

Compton suppression for 1-MeV  ray Wall Energy (keV) Suppression factor Ball Energy (keV) Suppression factor

WallBall (30)Ball(27) # of Ge det # of Rings 4 (6,10,10,6)3 (10,10,10)3 (9,9,9) Dist. from a target center13cm< <21cm 18cm,19.5cm16cm,19cm Closest dist. to the beam axis 7cm15.6cm14.2cm Solid angle (% of 4  ) 35.4%26.8%27.0% Total photo peak 1MeV (point source) Total PWO volume required23,800cm 3 61,600cm 3 51,200cm 3 Detector angles (deg.) ±(70,69,61, 40,28) (90,± 23)(90, ±35) Hyperball-J: Three configurations

HYP06 Mechanical cooling of Ge det. Tohoku & KEK collaboration Active development since April, 2006 Goal: Cooling of Ge crystal (70%) to lower than 85K with comparable energy resolution obtained by LN 2 cooling Stirling Pulse-Tube cryo-system adopted -Low mechanical vibration -Compact size -Low maintenance (50,000 hrs) July, 2006 succeeded in achieving 1.3MeV, but Ge Ge Compressor

PWO as a fast suppressor CrystalBGOPWO Density [g/cm 3 ] Decay constant [ns] 300 ~6 Absorption rate of  ray [%] 6762 Radiation length (cm) Light yield [NaI=100] 15 1 # of photo electron:5.2 # of photo electron:9.2 # of photo electron: Cs data taken by M.Mimori Doping & Cooling ADC channel

HYP06 Summary and future Hyperball-J,  – ray spectrometer for studies of bound hypernuclear systems at J-PARC (E13) Two geometries, and three candidates for the Hperball-J array design Mechanical cooling of Ge detectors Fast PWO background suppressors Finalizing on the array design for the day-1 experiment (E13) Prototype base detector unit (Ge & refrigerator & PWO) Wave from readout for full intensity K beam eventually

HYP06 Ball configuration II (# of det. 27, R=16cm, 19cm ) Designed by N. Chiga

HYP06 150MeV neutron (K)

HYP06 Major requirements to consider in construction of Ge array Efficiency –Arrangement geometry –Number of detectors –Individual detector efficiency –Back ground suppressor size Resolution –Detector performance –Noise reduced environment Background suppression –Suppressor material Modularity –Exchangeability of detectors Compact size Flexibility/configurability Symmetry Cost

HYP06 WallBall (30)Ball(27) # of Ge det Target distance 13cm< <21cm 18cm,19.5cm16cm,19cm Total photo peak 1MeV # of PWO elements # of PWO element shape 1 5 (Tapered) Total volume of PWO 23800cm cm cm 3 # of PWO case shape 5 2(hex, penta.) # of PMT Cost Hyperball-J: Three configurations

HYP06

backup Pulse tube –Microphonics –History PWO –Mimori waveform Prototype dimension

HYP06 Proposed “DAY-1” experiment E13  Several light hypernulcear experiments are submitted ( 4 Λ He, 7 Λ Li, 10 Λ B, 11 Λ B, 19 Λ F).  (K -, π - γ) at p K = 1.5 GeV/c (500k/spill) (Out going π - ~ 1.4 GeV/c)  Experimental setup is determined by these requirements.

HYP06 The K1.8 Beam line and SKS Beam spectrometers ・ BH1,2 : Time-of-flight ・ BAC : π - veto (n=1.03) SKS ・ SAC : K - veto (n=1.03) ・ SFV : K - beam veto ・ STOF : Time-of-flight Target : ~ 20 g/cm 2 DC : Beam position measurement Background Veto ・ SMF : μ - from K - →μ - +ν ・ SP0 : π - from K - →π - +π 0 SMF SP0 Hyperball-J : γray Beam spectrometer SKS 2.7T

HYP06 Measured VS Simulated efficiency Length: 69.6 mm Diameter: 71.1 mm End cap to crystal: 4 mm Al thickness: 1 mm Measured Relative efficiency: 67.9% –Source distance to the end cap: 250 mm –1.33MeV gamma 10 7 gamma (isotropic) photo peak counts Relative efficiency: 82% Ge 71.1mm 69.6 mm 80 mm 4 250mm Measured eff. = Sim . eff. X 0.82

HYP06 Initial measurement Conventional LN2 coolingPulse Tube mechanical cooling 1.33MeV

HYP06 Fuji Pulse Tube refrigerator OFF ShapAmp ORTEC micro, pole zeroed FWHM=1.0keV pulser

HYP06 Fuji Pulse Tube refrigerator ON ShapAmp ORTEC micro, pole zeroed FWHM=1.1keV pulser

HYP06 Joint R&D by Tohoku, KEK, Fuji Elect. Sys.  April 25,2006: First cooling of Ge with Pulse Tube (PT) refrigerator  Ge crystal, cold head  May 23, 2006: Second time cooling and resolution measurement  FWHM = 5KeV @ 1.33MeV 60 Co  June 9, 2006: Third time cooling and resolution measurement  Electrical insulation between Ge det. and PT  FWHM = 4.7KeV @ 1.33MeV 60 Co  July 13, 2006: Fifth time cooling and resolution measurement  Heat link modification for reduction of microphonics  FWHM = 1.9KeV @ 1.33MeV 60 Co  Sept., 2006: Refrigerator power up, Heat loss and external heat flow reduction improvement in progress  55V 86 Ge crystal, cold head, Heat Link  Oct., 2006~: Prototype detector for Hyperball-J

HYP06 Flash ADC Model of Flash ADC  V1729(CAEN) Sampling resolution  12bit Sampling rate  2GHz 1ch  0.5ns Sample of wave form ch

HYP06 Charge sensitive preamplifier C det. CtCt V test RfRf CfCf V out Changing of C f by mechanical vibration -> Microphonics

HYP06 Cooling Mechanism The cooling mechanism is simply a heat cycle →2 : Isothermal absorption ( 等温吸熱 ) 2→3 :Adiabatic compression ( 断熱圧縮 ) 3→4 :Isothermal heat rejection ( 等温放熱 ) 4→1 :Adiabatic expansion ( 断熱膨張 ) TCTC THTH THTH THTH TCTC

HYP06 Averaged wave forms Red:-25 o C Bule:0 o C Green:20 o C Black:1photo electron

HYP06 Temperature dependence of wave form Integrated area of averge wave form. Integration time interval  10ns. Saturation point  end of wave form Saturation point : 20 o C  50ns 0 o C  70ns -25 o C  100ns

KEK Meeting 16 Sep, 2006 Digitized waveform (1) ~single event~ KEK Meeting 16 Sep, 2006 Standard Pile Up SaturatedAfter reset X: Time channel Y: Voltage channel

KEK Meeting 16 Sep, 2006 Digitized waveform (2) ~multi event~ KEK Meeting 16 Sep, 2006

Digitized waveform (3) ~multi event~ KEK Meeting 16 Sep, 2006

Digitized waveform (4) ~Base-line shift~ KEK Meeting 16 Sep, 2006 Default Base-line