Chemistry 125: Lecture 17 Reaction Analogies and Carbonyl Reactivity In molecular orbital terms there is a close analogy among seemingly disparate organic.

Slides:



Advertisements
Similar presentations
Chemistry 125: Lecture 70 April 19, 2010 Acyl Compounds (Ch. 18) -H Reactivity (Ch. 19) This For copyright notice see final page of this file.
Advertisements

Several tricks (Z-effective and Self Consistent Field) allow one to correct approximately for the error in using orbitals when there is electron-electron.
Chemistry 125: Lecture 46 February 1, 2010 E2, S N 1, E1 This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 October 4, 2010 Checking Hybridization Theory with XH 3 Infrafred and electron spin resonance experiments with three XH 3 molecules.
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry This For copyright notice see final page of this.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Chemistry 125: Lecture 60 March 23, 2011 NMR Spectroscopy Chemical Shift and Diamagnetic Anisotropy, Spin-Spin Coupling This For copyright notice see final.
Chemistry 125: Lecture 49 February 10, 2010 Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final page.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
After applying the united-atom “plum-pudding” view of molecular orbitals, introduced in the previous lecture, to more complex molecules, this lecture introduces.
Chemistry 125: Lecture 68 April 14, 2010 Mitsunobu Reaction Acids and Acid Derivatives This For copyright notice see final page of this file.
Chemistry 125: Lecture 48 February 8, 2010 Addition to Alkenes a Physical-Organic MO Perspective This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 October 5, 2009 Checking Hybridization Theory with XH 3 Infrafred and electron spin resonance experiments with three XH 3 molecules.
Chem 125 Lecture 17 10/13/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chemistry 125: Lecture 16 October 9, 2009 Reaction Analogies and Carbonyl Reactivity Comparing the low LUMOs that make both HF and CH 3 F acidic underlines.
Chemistry 125: Lecture 51 February 15, 2010 More Addition to Alkenes: Organometallic Reagents and Catalysts This For copyright notice see final page of.
Chemistry 125: Lecture 64 April 7, 2010 Carbonyl Compounds Preliminary This For copyright notice see final page of this file.
Chemistry 125: Lecture 55 February 24, 2010 (4n+2) Aromaticity Cycloaddition Electrocyclic Reactions This For copyright notice see final page of this file.
Chemistry 125: Lecture 44 January 27, 2010 Nucleophilic Substitution and Mechanistic Tools: Rate Law & Rate Constant This For copyright notice see final.
Chemistry 125: Lecture 34 Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes Professor Barry Sharpless of Scripps Research Institute describes.
Chemistry 125: Lecture 43 January 25, 2010 Solvation, Ionophores and Brønsted Acidity This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 9, 2010 Oxidizing/Reducing Reagents Bookeeping & Mechanism This For copyright notice see final page of this file.
After applying the united-atom “plum-pudding” view of molecular orbitals, introduced in the previous lecture, to a more complex molecule, this lecture.
Chemistry 125: Lecture 73 April 28, 2010 Benzoin, Claisen, Robinson (Ch. 19) Two Un-Natural Products This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 6, 2011 Carbonyl Chemistry: Imines & Enamines Oxidation/Reduction & Electron Transfer This For copyright notice see final.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 47 February 5, 2010 Addition to Alkenes a Synthetic Perspective guest lecture by Prof. Jay S. Siegel Universit ä t Zurich This For.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 40 January 15, 2010 Predicting Rate Constants, and Reactivity - Selectivity Relation. Rates of Chain Reactions. This For copyright.
Chemistry 125: Lecture 64 April 2, 2010 Carbonyl Compounds Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 13 Overlap and Energy-Match Covalent bonding depends primarily on two factors: orbital overlap and energy-match. Overlap depends.
Chemistry 125: Lecture 65 April 7, 2010 Addition to C=O Mechanism & Equilibrium Protecting Groups Oxidation/Reduction & Electron Transfer This For copyright.
Chemistry 125: Lecture 18 Amide, Carboxylic Acid, and Alkyl Lithium The first half of the semester ends by analyzing three functional groups in terms of.
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry Preliminary more coming This For copyright notice.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chemistry 125: Lecture 13 October 2, 2009 Overlap and Energy-Match Covalent bonding depends primarily on two factors: orbital overlap and energy-match.
Chemistry 125: Lecture 57 March 3, 2010 Normal Modes: Mixing and Independence in Infrared Spectroscopy This For copyright notice see final page of this.
Chemistry 125: Lecture 69 April 16, 2010 Decarboxylation (Ch. 17) and Acyl Compounds (Ch. 18) This For copyright notice see final page of this file.
Chemistry 125: Lecture 54 February 22, 2010 Linear and Cyclic Conjugation Allylic Intermediates (4n+2) Aromaticity This For copyright notice see final.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Chem 125 Lecture 17 10/10/2005 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 67 April 11, 2011 Triphenylmethyl Spectra Friedel-Crafts Revisited Oxidizing/Reducing Scheme Alcohol Oxidation Mechanism This For.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 50 February 12, 2010 More Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Several tricks (“Z-effective” and “Self Consistent Field”) allow one to correct approximately for the error in using orbitals when there is electron-electron.
Synchronize when the speaker finishes saying, “…despite Earnshaw...” Synchrony can be adjusted by using the pause(||) and run(>) controls. Chemistry 125:
Chemistry 125: Lecture 62 March 29, 2010 Electrophilic Aromatic Substitution This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 Checking Hybridization Theory with XH 3 Synchronize when the speaker finishes saying “…whether what we have done is realistic.
Chemistry 125: Lecture 60 March 24, 2010 NMR Spectroscopy Isotropic J and Dynamics This For copyright notice see final page of this file.
Chemistry 125: Lecture 35 Understanding Molecular Structure and Energy through Standard Bonds Although molecular mechanics is imperfect, it is useful for.
Chemistry 125: Lecture 65 April 4, 2011 Addition to C=O Mechanism & Equilibrium Protecting Groups Imines This For copyright notice see final page of this.
Chem 125 Lecture 16 10/10/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chem 125 Lecture 15 10/8/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chemistry 125: Lecture 71 April 20, 2011 Acids and Acid Derivatives Decarboxylation (J&F Ch. 17) Acyl Compounds (J&F Ch. 18) This For copyright notice.
Chemistry 125: Lecture 50 February 11, 2011 Electrophilic Addition with Nucleophilic Participation Cycloaddition Epoxides This For copyright notice see.
This year’s Nobel Prizes in Physics and Chemistry tie in nicely to the subjects of our course, including today’s lecture. Examining the BH 3 molecule illustrates.
Chemistry 125: Lecture 17 October 8, 2010 Carbonyl, Amide, Carboxylic Acid, and Alkyl Lithium The first “half” of the semester ends by analyzing four functional.
Chemistry 125: Lecture 48 February 7, 2011 Alkenes: Stability and Addition Mechanisms Electrophilic Addition This For copyright notice see final page of.
Mitsunobu Reaction Acids and Acid Derivatives
Condensations (J&F Ch. 19) Fischer’s Glucose Proof - Introduction
Chemistry 125: Lecture 51 February 14, 2011 Cycloaddition Epoxides Ozonolysis & Acetals CH 3 Li + O=CH 2 Analogy OsO 4 This For copyright notice see final.
Chemistry 125: Lecture 49 February 9, 2011 Electrophilic Addition with Nucleophilic Participation This For copyright notice see final page of this file.
Chemistry 125: Lecture 18 Amide, Carboxylic Acid, and Alkyl Lithium
Imines & Enamines Oxidation/Reduction & Electron Transfer
Chemistry 125: Lecture 17 October 12, 2009 Carbonyl, Amide, Carboxylic Acid, and Alkyl Lithium The first “half” of the semester ends by analyzing four.
Acyl Insertions (J&F Ch. 18)
Diamagnetic Anisotropy, Spin-Spin Coupling
Solvation & Water Dissocation Brønsted Acidity
Presentation transcript:

Chemistry 125: Lecture 17 Reaction Analogies and Carbonyl Reactivity In molecular orbital terms there is a close analogy among seemingly disparate organic chemistry reactions: acid-base, S N 2 substitution, and E2 elimination. All these reactions involve breaking existing bonds, where LUMOs have antibonding nodes, while new bonds are being formed. The three-stage oxidation of ammonia by Cl 2 is analyzed in these terms. The analysis is extended to the reactivity of the carbonyl group and predicts the trajectory for attack by a high HOMO. This predicted trajectory was validated experimentally by Bürgi and Dunitz, who compared numerous crystal structures determined by X-ray diffraction. Synchronize when the speaker finishes saying “…from a new point of view.” Synchrony can be adjusted by using the pause(||) and run(>) controls. For copyright notice see final page of this file

F H Direction of HOMO approach for best overlap :OH FH OH ABN Besides creating a new bond, mixing HOMO with LUMO can break a bond where the LUMO has an AntiBonding Node. LUMO Reaction Analogies ** "Acid-Base" Make & Break

F H:OH FH OH "Acid-Base" F CH 3 :OH CH 3 OHF LUMO Reaction Analogies  "S N 2 Substitution" ABN (Could have been called S N 2 Substitution at H) Make & Break Same

Make & Break  F CH 3 :OH CH 3 OHF "S N 2 Substitution" F CH 2 CH 2 H F H:OH FH OH "Acid-Base" :OH F H OH CH 2 "E2 Elimination" ABN AON  Bonding Between Carbons This LUMO is the favorable mixture of  * C-H  * F-C ABN Make Two Break Two (Could have been called S N 2 Substitution at H) LORE! (LUMO calculation biased by stretching C-H, C-F) ? LUMO Reaction Analogies

“Oxidation” of Ammonia by Chlorine 3 NH 3 + Cl 2 H 2 N-NH 3 Cl + NH 4 Cl High HOMO? Low LUMO? n NH 3 :NH 3  * Cl 2 Cl-Cl High HOMO? Low LUMO? n NH 3 :NH 3  * N-H Cl-NH 2 -H + Cl + Cl-NH 3 +_ Low LUMO?  * Cl-N Cl-NH 2 High HOMO? n NH 3 :NH 3 Cl + NH 2 -NH 3 +_ Cl NH 4 Cl-NH 3 + Cl-NH 2 +NH 4 + H 2 N-NH 3 Cl Three Cycles of Make & BreakNH 3 s attack Cl, then H, then N.

Four Functional Groups: Carbonyl Amide Carboxylic Acid Alkyl Lithium (then we’ll have a complete change of perspective)

Functional Group Analysis Wiki due Thursday, Oct. 16

The Carbonyl Group C=O Probably the most important Functional Group in Organic Chemistry Strong AND Reactive

HOMO LUMO Shape of "Frontier" Orbitals Low LUMO 2p O  C-H AON Poor overlap (  ) ; Poor E-match (2p O < 2p C ) AON ABN >> Which is lower? nuclear charge overlap, bonding 2s 2p x 2p y 2p z 3s 3d xy 3d xz Pairwise Mixing Analysis Plum Pudding MOs (6 valence pairs) H H C O

C-O  Bonding Lower of Oxygen’s “Unshared" Pairs mostly a p-rich hybrid atomic orbital of Oxygen some O-C bonding with backside of C hybrid some C-H bonding Nodes through nuclei (AON), not between atoms (ABN)

Bürgi-Dunitz Angle From what direction should a nucleophile HOMO approach the  * LUMO of the C=O group?

Bürgi-Dunitz Angle From what direction should a nucleophile HOMO approach the  * LUMO of the C=O group? furthest from nodes

Structure Superposition from many Crystals (A-O) Containing N: and C=O Bürgi-Dunitz Angle (110°) R R C C O O N N N.B. There is another R group directly behind this one. from H. B. B ü rgi, J. D. Dunitz Accts. Chem. Res. 16, 153 (1983)

End of Lecture 17 Oct. 13, 2008 Copyright © J. M. McBride Some rights reserved. Except for cited third-party materials, and those used by visiting speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0).Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0) Use of this content constitutes your acceptance of the noted license and the terms and conditions of use. Materials from Wikimedia Commons are denoted by the symbol. Third party materials may be subject to additional intellectual property notices, information, or restrictions. The following attribution may be used when reusing material that is not identified as third-party content: J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0