Announcements Project 2 out today panorama signup help session at end of class Today mosaic recap blending.

Slides:



Advertisements
Similar presentations
More Mosaic Madness : Computational Photography Alexei Efros, CMU, Fall 2011 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen from.
Advertisements

CSCE 641 Computer Graphics: Image Mosaicing Jinxiang Chai.
Mosaics con’t CSE 455, Winter 2010 February 10, 2010.
Lecture 11: Transformations CS4670/5760: Computer Vision Kavita Bala.
Computational Photography: Image Mosaicing Jinxiang Chai.
Lecture 14: Panoramas CS4670: Computer Vision Noah Snavely What’s inside your fridge?
Announcements Project 2 Out today Sign up for a panorama kit ASAP! –best slots (weekend) go quickly...
Image Filtering, Part 2: Resampling Today’s readings Forsyth & Ponce, chapters Forsyth & Ponce –
Announcements Project 1 artifact voting ( announce later today) Project 2 out today (help session at end of class) IMPORTANT: choose Proj 2 partner.
Lecture 8: Geometric transformations CS4670: Computer Vision Noah Snavely.
Image Warping : Computational Photography Alexei Efros, CMU, Fall 2005 Some slides from Steve Seitz
Direct Methods for Visual Scene Reconstruction Paper by Richard Szeliski & Sing Bing Kang Presented by Kristin Branson November 7, 2002.
Homographies and Mosaics : Computational Photography Alexei Efros, CMU, Fall 2005 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen.
Lecture 7: Image Alignment and Panoramas CS6670: Computer Vision Noah Snavely What’s inside your fridge?
Lecture 6: Image transformations and alignment CS6670: Computer Vision Noah Snavely.
Lecture 11: Structure from motion CS6670: Computer Vision Noah Snavely.
Lecture 22: Structure from motion CS6670: Computer Vision Noah Snavely.
Lecture 9: Image alignment CS4670: Computer Vision Noah Snavely
Image Stitching and Panoramas
Announcements Project 1 artifact voting Project 2 out today panorama signup help session at end of class Guest lectures next week: Li Zhang, Jiwon Kim.
1Jana Kosecka, CS 223b Cylindrical panoramas Cylindrical panoramas with some slides from R. Szeliski, S. Seitz, D. Lowe, A. Efros,
CSCE 641 Computer Graphics: Image Mosaicing Jinxiang Chai.
Lecture 8: Image Alignment and RANSAC
More Mosaic Madness : Computational Photography Alexei Efros, CMU, Fall 2005 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen from.
Image Warping and Mosacing : Rendering and Image Processing Alexei Efros …with a lot of slides stolen from Steve Seitz and Rick Szeliski.
Announcements Project 1 Grading session this afternoon Artifacts due Friday (voting TBA) Project 2 out (online) Signup for panorama kits ASAP (weekend.
More Mosaic Madness : Computational Photography Alexei Efros, CMU, Fall 2006 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen from.
Image Stitching II Ali Farhadi CSE 455
Announcements Project 1 artifact voting Project 2 out today (help session at end of class)
Lecture 12: Structure from motion CS6670: Computer Vision Noah Snavely.
Image Stitching Ali Farhadi CSEP 576 Several slides from Rick Szeliski, Steve Seitz, Derek Hoiem, and Ira Kemelmacher.
Announcements Midterm due Friday, beginning of lecture Guest lecture on Friday: Antonio Criminisi, Microsoft Research.
Mosaics CSE 455, Winter 2010 February 8, 2010 Neel Joshi, CSE 455, Winter Announcements  The Midterm went out Friday  See to the class.
Image Stitching Ali Farhadi CSE 455
Image Warping (Szeliski 3.6.1) cs129: Computational Photography James Hays, Brown, Fall 2012 Slides from Alexei Efros and Steve Seitz
Mosaics Today’s Readings Szeliski, Ch 5.1, 8.1 StreetView.
Image stitching Digital Visual Effects Yung-Yu Chuang with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac.
Image Stitching Ali Farhadi CSE 576 Several slides from Rick Szeliski, Steve Seitz, Derek Hoiem, and Ira Kemelmacher.
Image Warping and Morphing cs195g: Computational Photography James Hays, Brown, Spring 2010 © Alexey Tikhonov.
CS4670 / 5670: Computer Vision KavitaBala Lecture 17: Panoramas.
Mosaics part 3 CSE 455, Winter 2010 February 12, 2010.
Image Morphing Computational Photography Derek Hoiem, University of Illinois 9/29/15 Many slides from Alyosha Efros.
Image Stitching II Linda Shapiro CSE 455. RANSAC for Homography Initial Matched Points.
Announcements No midterm Project 3 will be done in pairs same partners as for project 2.
Example: warping triangles Given two triangles: ABC and A’B’C’ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other.
Mosaics Today’s Readings Szeliski and Shum paper (sections 1 and 2, skim the rest) –
CS559: Computer Graphics Lecture 7: Image Warping and Panorama Li Zhang Spring 2008 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Lecture 15: Transforms and Alignment CS4670/5670: Computer Vision Kavita Bala.
Image Stitching Computer Vision CS 691E Some slides from Richard Szeliski.
Image Warping 2D Geometric Transformations
Homographies and Mosaics : Computational Photography Alexei Efros, CMU, Fall 2006 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen.
Image Stitching II Linda Shapiro EE/CSE 576.
CS4670 / 5670: Computer Vision Kavita Bala Lecture 20: Panoramas.
COSC579: Image Align, Mosaic, Stitch
Computational Photography Derek Hoiem, University of Illinois
Image Stitching Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi.
Recap from Friday Image Completion Synthesis Order Graph Cut Scene Completion.
Idea: projecting images onto a common plane
Announcements Project 2 out today (help session at end of class)
More Mosaic Madness : Computational Photography
Image Stitching II Linda Shapiro EE/CSE 576.
Image Stitching II Linda Shapiro CSE 455.
Image Stitching Computer Vision CS 678
Announcements Project 1 Project 2 Vote for your favorite artifacts!
Announcements Project 1 artifact voting Project 2 out today
Image Stitching II Linda Shapiro EE/CSE 576.
Image Stitching Linda Shapiro ECE/CSE 576.
Image Stitching II Linda Shapiro ECE P 596.
Image Stitching Linda Shapiro ECE P 596.
Presentation transcript:

Announcements Project 2 out today panorama signup help session at end of class Today mosaic recap blending

Mosaics Full screen panoramas (cubic): Mars: New Years Eve:

Image Mosaics + + … += Goal Stitch together several images into a seamless composite

How to do it? Basic Procedure Take a sequence of images from the same position –Rotate the camera about its optical center Compute transformation between second image and first Shift the second image to overlap with the first Blend the two together to create a mosaic If there are more images, repeat

mosaic PP Image reprojection The mosaic has a natural interpretation in 3D The images are reprojected onto a common plane The mosaic is formed on this plane

Image reprojection Basic question How to relate two images from the same camera center? –how to map a pixel from PP1 to PP2 PP2 PP1 Answer Cast a ray through each pixel in PP1 Draw the pixel where that ray intersects PP2 Don’t need to know what’s in the scene!

Image reprojection Observation Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another

Homographies Perspective projection of a plane Lots of names for this: –homography, texture-map, colineation, planar projective map Modeled as a 2D warp using homogeneous coordinates Hpp’ To apply a homography H Compute p’ = Hp (regular matrix multiply) Convert p’ from homogeneous to image coordinates –divide by w (third) coordinate

Image warping with homographies image plane in frontimage plane below black area where no pixel maps to

Panoramas What if you want a 360  field of view? Idea is the same as before, but the warp is a little more complicated (see Rick’s slides) key property: once you warp two images onto a cylinder or sphere, you can align them with a simple translation –assuming camera pan mosaic Projection Cylinder/Sphere

Assembling the panorama Stitch pairs together, blend, then crop

Problem: Drift Error accumulation small errors accumulate over time

Problem: Drift Solution add another copy of first image at the end this gives a constraint: y n = y 1 there are a bunch of ways to solve this problem –add displacement of (y 1 – y n )/(n -1) to each image after the first –compute a global warp: y’ = y + ax –run a big optimization problem, incorporating this constraint »best solution, but more complicated »known as “bundle adjustment” (we’ll cover next week, proj 3) (x 1,y 1 ) copy of first image (x n,y n )

Image warping Given a coordinate transform (x’,y’) = h(x,y) and a source image f(x,y), how do we compute a transformed image g(x’,y’) = f(h(x,y))? xx’ h(x,y) f(x,y)g(x’,y’) yy’

f(x,y)g(x’,y’) Forward warping Send each pixel f(x,y) to its corresponding location (x’,y’) = h(x,y) in the second image xx’ h(x,y) Q: what if pixel lands “between” two pixels? yy’

f(x,y)g(x’,y’) Forward warping Send each pixel f(x,y) to its corresponding location (x’,y’) = h(x,y) in the second image xx’ h(x,y) Q: what if pixel lands “between” two pixels? yy’ A: distribute color among neighboring pixels (x’,y’) –Known as “splatting”

f(x,y)g(x’,y’) x y Inverse warping Get each pixel g(x’,y’) from its corresponding location (x,y) = h -1 (x’,y’) in the first image xx’ Q: what if pixel comes from “between” two pixels? y’ h -1 (x,y)

f(x,y)g(x’,y’) x y Inverse warping Get each pixel g(x’,y’) from its corresponding location (x,y) = h -1 (x’,y’) in the first image xx’ h -1 (x,y) Q: what if pixel comes from “between” two pixels? y’ A: interpolate color value from neighbors - known as image resampling

Image resampling How can we estimate image colors off the grid? d = 1 in this example Two Steps: reconstruct a continuous image resample that image at desired locations Image reconstruction Convert to a continuous function Reconstruct by cross-correlation:

Resampling filters What does the 2D version of this hat function look like? Better filters give better resampled images Bicubic is common choice –fit 3 rd degree polynomial surface to pixels in neighborhood –can also be implemented by a cross-correlation performs linear interpolation (tent function) performs bilinear interpolation

Bilinear interpolation A simple method for resampling images

Forward vs. inverse warping Q: which is better? A: usually inverse—eliminates holes however, it requires an invertible warp function—not always possible...

Image Blending

Feathering =

Effect of window size 0 1 left right 0 1

Effect of window size

Good window size 0 1 “Optimal” window: smooth but not ghosted Doesn’t always work...

Encoding blend weights: I(x,y) = (  R,  G,  B,  ) color at p = Implement this in two phases: 1. accumulate all images: I(p) = I(p) + I i (p) 2. at the end, normalize: I(p) = I(p) / I(p)[4] Q: what if  = 0? Alpha Blending Optional: see Blinn (CGA, 1994) for details: er=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&a rAuthor=Blinn%2C+J.Fhttp://ieeexplore.ieee.org/iel1/38/7531/ pdf?isNumb er=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&a rAuthor=Blinn%2C+J.F. I1I1 I2I2 I3I3 p

Pyramid blending Create a Laplacian pyramid, blend each level Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, A multiresolution spline with applications to image mosaics

Poisson Image Editing Blend the gradients of the two images, then integrate For more info: Perez et al, SIGGRAPH

Graph cut blending Select only one image per output pixel, using spatial continuity Kwatra et al., SIGGRAPH 03 Agarwala et al., SIGGRAPH 04

Deghosting using optical flow Compensate for misalignments, parallax, lens distortion compute residual pixel-wise warp needed for perfect alignment (optical flow—will cover this later in the course) apply that warp to register the images (deghosting) covered in Szesliski & Shum reading without deghostingdeghosted

Project 2 (out today) 1.Take pictures on a tripod (or handheld) 2.Warp to spherical coordinates 3.Automatically compute pair-wise alignments 4.Correct for drift 5.Blend the images together 6.Crop the result and import into a viewer

AutoStitch Method so far is not completely automatic need to know which pairs fit together Newer methods are fully automatic AutoStitch, by Matthew Brown and David Lowe: – Microsoft Picture It! Digital Image Pro 10.0

Other types of mosaics Can mosaic onto any surface if you know the geometry See NASA’s Visible Earth project for some stunning earth mosaicsVisible Earth project –

Slit images y-t slices of the video volume are known as slit images take a single column of pixels from each input image x y t

Slit images: cyclographs

Slit images: photofinish