Soo-Bong Kim Seoul National Univ. Current Status of RENO (Symposium on “Physics of Massive Neutrinos” May 20-22, 2008, Milos, Greece)

Slides:



Advertisements
Similar presentations
Proposal for RENO-50 Soo-Bong Kim (KNRC, Seoul National University) “International Workshop on RENO-50, June 13-14, 2013”
Advertisements

Results from Daya Bay Xin Qian On behalf of Daya Bay Collaboration Xin Qian, BNL1.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Recent Results from RENO & Future Plan
Past Experience of reactor neutrino experiments Yifang Wang Institute of High Energy Physics, Beijing Nov. 28, 2003.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Alternative Prototype Detector Design D. Reyna Argonne National Lab.
Daya Bay Neutrino Experiment
Antineutrino Detector
Observation of Reactor Antineutrino Disappearance at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University (presented at KEK on.
Liquid Scintillator R&D for RENO Lee, Jaison For RENO Collaboration.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
Jun Cao Institute of High Energy Physics, Beijing Daya Bay Neutrino Experiment 3rd International Conference on Flavor Physics, Oct. 3-8, 2005 National.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
Simulation study of RENO-50 Jungsic Park Seoul National University RENO-50 International Workshop June 13-14, 2013 Hoam Faculty House, Korea.
Eun-Ju Jeon Sejong Univ. Sept. 09, 2010 Status of RENO Experiment Neutrino Oscillation Workshop (NOW 2010) September 4-11, 2010, Otranto, Lecce, Italy.
Soo-Bong Kim Seoul National Univ. RENO for Neutrino Mixing Angle  13 5 th International Workshop on Low Energy Neutrino Physcis (Neutrino Champagne LowNu.
Current Status of RENO Jaison Lee (Seoul National Univ.) for RENO Collaboration 2009/12/17, KISTI.
Youngdo Oh Pohang University of science and Technology Current Status of RENO NOW2008 (Conca Specchiulla, Italy)
Status of RENO Experiment Reactor Neutrino Oscillation in Korea
Cheng-Ju S. Lin Lawrence Berkeley National Lab (On Behalf of the Daya Bay Collaboration) 17 July 2010 Status of the Daya Bay Neutrino Oscillation Experiment.
Karsten Heeger, Univ. Wisconsin 1 Daya Bay DOE Review, October 16, 2006 Design of the Daya Bay Antineutrino Detectors Outline 1.Requirements 2.Overall.
Christopher White Illinois Institute of Technology and Lawrence Berkeley National Laboratory Neutrino Christchurch, New Zealand 26 May 2008 Asian.
SYSTEMATICS (preliminary consideration) V. Sinev for Kurchatov Institute Neutrino group.
A detector design for the Daya Bay reactor neutrino experiment Yifang Wang Institute of High Energy Physics, Beijing Jan. 18, 2004.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
RENO and the Last Result
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
Karsten Heeger, Univ. of WisconsinDNP2006, Nashville, October 28, 2006 A High-Precision Measurement of sin 2 2  13 with the Daya Bay Reactor Antineutrino.
The Daya Bay Experiment to Measure  13 Herbert Steiner UC Berkeley & LBNL On behalf of the Daya Bay Collaboration Presented at the Erice School/Workshop.
RENO for Neutrino Mixing Angle q13
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
Efforts in Russia V. Sinev Kurchatov Institute. Plan of talk Rovno experiments at th On the determination of the reactor fuel isotopic content by.
Park Kang Soon Seokyeong Univ. Status of the RENO San Clemente, Pelugia Sep , 2009.
The Daya Bay Reactor Neutrino Experiment Jonathan Link Virginia Polytechnic Institute & State University on behalf of the Daya Bay Collaboration Neutrino.
Results for the Neutrino Mixing Angle  13 from RENO International School of Nuclear Physics, 35 th Course Neutrino Physics: Present and Future, Erice/Sicily,
,,,,, The Daya Bay Reactor Neutrino Experiment Liangjian Wen On behalf of the Daya Bay Collaboration Institute of High Energy Physics Daya Bay Detectors.
RENO & RENO-50 Soo-Bong Kim (KNRC, Seoul National University) “NOW 2014, Conca Specchiulla, Otranto, Lecce, Italy, September 7-14, 2014”
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
Soo-Bong Kim Dept. of Physics & Astronomy Seoul National University April 15, 2009 A Korean Project of Neutrino Oscillations.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
Search for  13 at Daya Bay On behalf of the Daya Bay Collaboration Deb Mohapatra Virginia Tech.
Measuring sin 2 2  13 with the Daya Bay nuclear power reactors Yifang Wang for Daya Bay collaboration Institute of High Energy Physics.
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Jun Cao Jan. 18, 2004 Daya Bay neutrino experiment workshop (Beijing) Detector Module Simulation and Baseline Optimization ● Determine module geometric.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
Karsten Heeger, Univ. of Wisconsin Yale University, March 1, 2010  13 from Global Fits current best limit sin 2 2θ 13 < CL Fogli, et al., arXiv:0905:3549.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
J.S. Jang Chonnam National University for RENO collaboration Oct. 24, 2010.
1 Daya Bay Reactor Neutrino Oscillation Experiment Jen-Chieh Peng International Workshop on “Double Beta Decay and Neutrinos” Osaka, Japan, June 11-13,
Results on  13 Neutrino Oscillations from Reactor Experiments Soo-Bong Kim (KNRC, Seoul National University) “INPC 2013, Firenze, June 2-7, 2013”
Status and Prospects of Reactor Neutrino Experiments Soo-Bong Kim (KNRC, Seoul National University) “NuPhys 2014: Prospects in Neutrino Physics, London,
K.K. Joo Chonnam National University November 13, Kavli, IPMU, Japan Neutrino Program in Korea (RENO/RENO-50/AMoRE/SBL) Neutrino Program.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
2nd Sino-French Workshop on the Dark Universe Changgen Yang Institute of High Energy Physics, Beijing for the Daya Bay Collaboration Daya Bay Reactor Neutrino.
IBD Detection Efficiencies and Uncertainties
NuFact 2012, Williamsburg, VA
Fast neutron flux measurement in CJPL
Observation of Reactor Antineutrino Disappearance at RENO
NEUTRINO OSCILLATION MEASUREMENTS WITH REACTORS
The Daya Bay Reactor Neutrino Experiment
Sterile Neutrinos at the Crossroads, Blacksburg, VA
Simulation for DayaBay Detectors
Current Status of RENO Soo-Bong Kim Seoul National Univ.
Current Results from Reactor Neutrino Experiments
Daya Bay Neutrino Experiment
Daya Bay Neutrino Experiment
Presentation transcript:

Soo-Bong Kim Seoul National Univ. Current Status of RENO (Symposium on “Physics of Massive Neutrinos” May 20-22, 2008, Milos, Greece)

New Reactor Neutrino  13 Experiment  Lower background - Improved detector design - Increased overburden  CHOOZ : R osc = 1.01 ± 2.8% (stat) ± 2.7% (syst)  Larger statistics - More powerful reactors (multi-core) - Larger detection volume - Longer exposure  Smaller experimental errors - Identical multi detectors → Obtain ~1% precision !!!

Detection of Reactor Neutrinos data from CHOOZ hep-ex/ v1 (1) 0.7<E prompot <9MeV (2) 5<E delayed <11MeV (3) 1μs<ΔT <200μs e + energy n capture energy

RENO Collaboration  Chonnam National University  Dongshin University  Gyeongsang National University  Kyungpook National University  Pusan National University  Sejong University  Seoul National University  Sungkyunkwan University  Institute of Nuclear Research RAS (Russia)  Institute of Physical Chemistry and Electrochemistry RAS (Russia) +++

Schematic Setup of RENO at YeongGwang

Google Satellite View of YeongGwang Site

Schematic View of Underground Facility 100m300m 70m high 200m high 1,380m290m Far Detector Near Detector Reactors

Schedule Activities Detector Design & Specification Geological Survey & Tunnel Design Detector Construction Excavation & Underground Facility Construction Detector Commissioning

Comparison of Reactor Neutrino Experiments ExperimentsLocation Thermal Power (GW) Distances Near/Far (m) Depth Near/Far (mwe) Target Mass (tons) Double-CHOOZFrance8.7280/105060/30010/10 RENOKorea / /45016/16 Daya BayChina (500)/1985(1613)260/  2/80

Summary of Construction Status 03~10, 2007 : Geological survey and tunnel design are completed. 05~12, 2008 : Tunnel construction Hamamatsu 10” PMTs are considered to be purchased. (expect to be delivered from March 2009) SK new electronics are adopted and ordered. (will be ready in Sep. 2008) Steel/acrylic containers and mechanical structure will be ordered soon. Liquid scintillator handling system is being designed. Mock-up detector (~1/4 in length) will be made in June, 2008.

Rock sampling (DaeWoo Engineering Co.) Rock samples from boring

Rock quality map Near detector site: - tunnel length : 110m - overburden height : 46.1m Far detector site: - tunnel length : 272m - overburden height : 168.1m

Stress analysis for tunnel design

Detector Design with MC Simulation  Detector performance study & Detector optimization with MC : - Gamma catcher size - Buffer size - photo-sensor coverage (no. of PMTs) - neutron tagging efficiency as a function of Gd concentration  Systematic uncertainty & sensitivity study  Reconstruction(vertex position & energy) program written  Background estimation  RENO-specific MC simulation based on GLG4sim/Geant4 → Detailed detector design and drawings are completed

RENO Detector Inner Diameter (cm) Inner Height (cm) Filled withMass (tons) Target Vessel Gd(0.1%) + LS 16.5 Gamma catcher LS30.0 Buffer tank Mineral oil 64.4 Veto tank water352.6 total ~460 tons

RENO Detector

Electronics  Use SK new electronics (will be ready in Sep., 2008)

Source Driving System

Prototype Detector Assembly Acrylic vesselsInner acrylic vessel Nitrogen flushing of LS Mounting PMTs Filling with liquid scintillator assembled prototype

Mockup Detector Target + Gamma Catcher Acrylic Containers (PMMA: Polymethyl Methacrylate or Plexiglass) TargetDiameter61 cm Height60 cm Gamma Catcher Diameter120 cm Height120 cm BufferDiameter220 cm Height220 cm Buffer Stainless Steel Tank

MC of Mockup Detector 60 Co 137 Cs

Gd Loaded Liquid Scintillator  Recipe with various mixture: performance ( light yield, transmission & attenuation lengths ), availability, cost, etc.  Design of purification system & flow meter  Long-term stability test  Reaction with acrylic?  R&D on LAB  Recipe of Liquid Scintillator : Aromatic SolventFlourWLSGd-compound LABPPO, BPO Bis-MSB, POPOP 0.1% Gd+TMHA (trimethylhexanoic acid)  0.1% Gd compounds with CBX (Carboxylic acids; R-COOH) - CBX : MVA (2-methylvaleric acid), TMHA (2-methylvaleric acid)

Synthesis of Gd-carboxylate precipitation Rinse with 18MΩ water Dryer

R&D with LAB Light yield measurement PC100% LAB100% PC40% PC20% LAB100% PC20% N2 LAB60% LAB80% MO80% C n H 2n+1 -C 6 H 5 (n=10~14) High Light Yield : not likely Mineral oil(MO) replace MO and even Pseudocume(PC) probably Good transparency (better than PC) High Flash point : 147 o C (PC : 48 o C) Environmentally friendly (PC : toxic) Components well known (MO : not well known) Domestically available: Isu Chemical Ltd. ( 이수화학 )

Measurement of LAB Components with GC-MS C 16 H 26 C 17 H 28 C 18 H 30 C 19 H % 27.63% 34.97% 30.23% LAB : (C 6 H 5 )C N H 2N+1 # of H [m -3 ] = x H/C = 1.66

 Reconstructed vertex:  ~ 8cm at the center of the detector Reconstruction : vertex & energy 1 MeV (KE) e +  Energy response and resolution: visible energy PMT coverage, resolution ~210 photoelectrons per MeV |y|  y (mm) E vis (MeV) y 4 MeV (KE) e +

target buffer  -catcher Reconstruction of Cosmic Muons ~140cm ~40cm ~120cm A B C D Veto (OD) Buffer (ID) pulse height time OD PMTs ID PMTs

Calculation of Background Rates due to Radioactivity Concentration 40 K (ppb) Concentration 232 Th (ppb) Concentration 238 U (ppb) 40 K [Hz] 232 Th [Hz] 238 U [Hz] Total [Hz] Rock4.33(ppm)7.58(ppm)2.32(ppm) LS in Target Target Contatiner LS in Gamma Catcher Gamma Catcher Container LS in Buffer ~ Buffer Tank PMT Total~24

J μ [cm -2 s -1 ] [GeV] Far 250 m2.9× m8.5× Near70 m5.5× Muon intensity at the sea level using modified Gaisser parametrization + MUSIC or Geant4 (the code for propagating muon through rock) Calculation of Muon Rate at the RENO Underground

Systematic Errors Systematic SourceCHOOZ (%)RENO (%) Reactor related absolute normalization Reactor antineutrino flux and cross section 1.9< 0.1 Reactor power0.7< 0.1 Energy released per fission0.6< 0.1 Number of protons in target H/C ratio Target mass0.3< 0.1 Detector Efficiency Positron energy Positron geode distance Neutron capture (H/Gd ratio)1.0< 0.1 Capture energy containment Neutron geode distance Neutron delay Positron-neutron distance Neutron multiplicity combined2.7< 0.6

RENO Expected Sensitivity 10x better sensitivity than current limit New!! (full analysis)

GLoBES group – Mention’s talk SK  m 2

Status Report of RENO  RENO is suitable for measuring  13 (sin 2 (2  13 ) > 0.02)  RENO is under construction phase.  Geological survey and design of access tunnels & detector cavities are completed → Civil construction will begin in early June,  International collaborators are being invited.  TDR will be ready in June of  Data –taking is expected to start in early 2010.