Syntax Analysis Mooly Sagiv html://www.math.tau.ac.il/~msagiv/courses/wcc03.html Textbook:Modern Compiler Design Chapter 2.2 (Partial) Hashlama 11:00-14:00.

Slides:



Advertisements
Similar presentations
A question from last class: construct the predictive parsing table for this grammar: S->i E t S e S | i E t S | a E -> B.
Advertisements

Compilation (Semester A, 2013/14) Lecture 6a: Syntax (Bottom–up parsing) Noam Rinetzky 1 Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav.
Recap Roman Manevich Mooly Sagiv. Outline Subjects Studied Questions & Answers.
Mooly Sagiv and Roman Manevich School of Computer Science
Recap Mooly Sagiv. Outline Subjects Studied Questions & Answers.
Bottom-Up Syntax Analysis Mooly Sagiv Textbook:Modern Compiler Design Chapter (modified)
Bottom-Up Syntax Analysis Mooly Sagiv html:// Textbook:Modern Compiler Design Chapter
Context-Free Grammars Lecture 7
Syntax Analysis Mooly Sagiv html:// Textbook:Modern Compiler Implementation in C Chapter 3.
ISBN Chapter 4 Lexical and Syntax Analysis The Parsing Problem Recursive-Descent Parsing.
Bottom-Up Syntax Analysis Mooly Sagiv & Greta Yorsh Textbook:Modern Compiler Design Chapter (modified)
1 Foundations of Software Design Lecture 23: Finite Automata and Context-Free Grammars Marti Hearst Fall 2002.
Parsing — Part II (Ambiguity, Top-down parsing, Left-recursion Removal)
Compiler Summary Mooly Sagiv html://
Yu-Chen Kuo1 Chapter 2 A Simple One-Pass Compiler.
Syntax Analysis Mooly Sagiv Textbook:Modern Compiler Design Chapter 2.2 (Partial)
Bottom-Up Syntax Analysis Mooly Sagiv & Greta Yorsh Textbook:Modern Compiler Design Chapter (modified)
Bottom-Up Syntax Analysis Mooly Sagiv html:// Textbook:Modern Compiler Implementation in C Chapter 3.
Table-driven parsing Parsing performed by a finite state machine. Parsing algorithm is language-independent. FSM driven by table (s) generated automatically.
Compiler Construction Parsing I Ran Shaham and Ohad Shacham School of Computer Science Tel-Aviv University.
(2.1) Grammars  Definitions  Grammars  Backus-Naur Form  Derivation – terminology – trees  Grammars and ambiguity  Simple example  Grammar hierarchies.
1 Introduction to Parsing Lecture 5. 2 Outline Regular languages revisited Parser overview Context-free grammars (CFG’s) Derivations.
BİL 744 Derleyici Gerçekleştirimi (Compiler Design)1 Syntax Analyzer Syntax Analyzer creates the syntactic structure of the given source program. This.
CISC 471 First Exam Review Game Questions. Overview 1 Draw the standard phases of a compiler for compiling a high level language to machine code, showing.
10/13/2015IT 3271 Tow kinds of predictive parsers: Bottom-Up: The syntax tree is built up from the leaves Example: LR(1) parser Top-Down The syntax tree.
Context-Free Grammars
PART I: overview material
1 Syntax In Text: Chapter 3. 2 Chapter 3: Syntax and Semantics Outline Syntax: Recognizer vs. generator BNF EBNF.
Syntax and Semantics Structure of programming languages.
Syntax Analysis Mooly Sagiv Textbook:Modern Compiler Design Chapter 2.2 (Partial) 1.
11 Chapter 4 Grammars and Parsing Grammar Grammars, or more precisely, context-free grammars, are the formalism for describing the structure of.
Bernd Fischer RW713: Compiler and Software Language Engineering.
CFG1 CSC 4181Compiler Construction Context-Free Grammars Using grammars in parsers.
CS412/413 Introduction to Compilers and Translators Spring ’99 Lecture 3: Introduction to Syntactic Analysis.
A Programming Languages Syntax Analysis (1)
Chapter 3 Context-Free Grammars and Parsing. The Parsing Process sequence of tokens syntax tree parser Duties of parser: Determine correct syntax Build.
Top-Down Parsing CS 671 January 29, CS 671 – Spring Where Are We? Source code: if (b==0) a = “Hi”; Token Stream: if (b == 0) a = “Hi”; Abstract.
Syntax Analysis - Parsing Compiler Design Lecture (01/28/98) Computer Science Rensselaer Polytechnic.
CSE 5317/4305 L3: Parsing #11 Parsing #1 Leonidas Fegaras.
LECTURE 4 Syntax. SPECIFYING SYNTAX Programming languages must be very well defined – there’s no room for ambiguity. Language designers must use formal.
1 Introduction to Parsing. 2 Outline l Regular languages revisited l Parser overview Context-free grammars (CFG ’ s) l Derivations.
COMP 3438 – Part II-Lecture 5 Syntax Analysis II Dr. Zili Shao Department of Computing The Hong Kong Polytechnic Univ.
Parser: CFG, BNF Backus-Naur Form is notational variant of Context Free Grammar. Invented to specify syntax of ALGOL in late 1950’s Uses ::= to indicate.
UMBC  CSEE   1 Chapter 4 Chapter 4 (b) parsing.
Bottom Up Parsing CS 671 January 31, CS 671 – Spring Where Are We? Finished Top-Down Parsing Starting Bottom-Up Parsing Lexical Analysis.
COMP 3438 – Part II-Lecture 6 Syntax Analysis III Dr. Zili Shao Department of Computing The Hong Kong Polytechnic Univ.
Spring 16 CSCI 4430, A Milanova 1 Announcements HW1 will be out this evening Due Monday, 2/8 Submit in HW Server AND at start of class on 2/8 A review.
Compiler Construction Lecture Five: Parsing - Part Two CSC 2103: Compiler Construction Lecture Five: Parsing - Part Two Joyce Nakatumba-Nabende 1.
COMP 3438 – Part II - Lecture 4 Syntax Analysis I Dr. Zili Shao Department of Computing The Hong Kong Polytechnic Univ.
CMSC 330: Organization of Programming Languages Pushdown Automata Parsing.
Syntax Analysis By Noor Dhia Syntax analysis:- Syntax analysis or parsing is the most important phase of a compiler. The syntax analyzer considers.
Chapter 3 – Describing Syntax CSCE 343. Syntax vs. Semantics Syntax: The form or structure of the expressions, statements, and program units. Semantics:
Chapter 3 – Describing Syntax
Programming Languages Translator
CS510 Compiler Lecture 4.
Chapter 3 Context-Free Grammar and Parsing
Textbook:Modern Compiler Design
Syntax Analysis Chapter 4.
Context-free Languages
Bottom-Up Syntax Analysis
4 (c) parsing.
Top-Down Parsing CS 671 January 29, 2008.
Context-Free Grammars
Lecture 7: Introduction to Parsing (Syntax Analysis)
CSC 4181Compiler Construction Context-Free Grammars
CSC 4181 Compiler Construction Context-Free Grammars
Context-Free Grammars
Context-Free Grammars
COMPILER CONSTRUCTION
Presentation transcript:

Syntax Analysis Mooly Sagiv html:// Textbook:Modern Compiler Design Chapter 2.2 (Partial) Hashlama 11:00-14:00 Melamed

A motivating example Create a desk calculator Challenges –Non trivial syntax –Recursive expressions (semantics) Operator precedence

Solution (lexical analysis) /* desk.l */ % [0-9]+ { yylval = atoi(yytext); return NUM ;} “+” { return PLUS ;} “-” { return MINUS ;} “/” { return DIV ;} “*” { return MUL ;} “(“ { return LPAR ;} “)” { return RPAR ;} “//”.*[\n] ; /* comment */ [\t\n ] ; /* whitespace */. { error (“illegal symbol”, yytext[0]); }

Solution (syntax analysis) /* desk.y */ %token NUM %left PLUS, MINUS %left MUL, DIV %token LPAR, RPAR %start P % P : E {printf(“%d\n”, $1) ;} ; E : NUM { $$ = $1 ;} | LPAR e RPAR { $$ = $2; } | e PLUS e { $$ = $1 + $3 ; } | e MINUS e { $$ = $1 - $3 ; } | e MUL e { $$ = $1 * $3; } | e DIV e {$$ = $1 / $3; } ; % #include “lex.yy.c” flex desk.l bison desk.y cc y.tab.c –ll -ly

Solution (syntax analysis) // input * 3 a.out <input 22

Subjects The task of syntax analysis Automatic generation Error handling Context Free Grammars Ambiguous Grammars Top-Down vs. Bottom-Up parsing Bottom-up Parsing

Basic Compiler Phases Source program (string) Fin. Assembly lexical analysis syntax analysis semantic analysis Tokens Abstract syntax tree Front-End Back-End

input –Sequence of tokens output –Abstract Syntax Tree Report syntax errors unbalanced parenthesizes [Create “symbol-table” ] [Create pretty-printed version of the program] In some cases the tree need not be generated (one-pass compilers) Syntax Analysis (Parsing)

Report and locate the error Diagnose the error Correct the error Recover from the error in order to discover more errors –without reporting too many “strange” errors Handling Syntax Errors

Example a := a * ( b + c * d ;

The Valid Prefix Property For every prefix tokens –t 1, t 2, …, t i that the parser identifies as legal: there exists tokens t i+1, t i+2, …, t n such that t 1, t 2, …, t n is a syntactically valid program If every token is considered as single character: –For every prefix word u that the parser identifies as legal: there exists w such that –u.w is a valid program

Error Diagnosis Line number –may be far from the actual error The current token The expected tokens Parser configuration

Error Recovery Becomes less important in interactive environments Example heuristics: –Search for a semi-column and ignore the statement –Try to “replace” tokens for common errors – Refrain from reporting 3 subsequent errors Globally optimal solutions –For every input w, find a valid program w’ with a “minimal-distance” from w

Why use context free grammars for defining PL syntax? Captures program structure (hierarchy) Employ formal theory results Automatically create “efficient” parsers

Context Free Grammar (Review) What is a grammar Derivations and Parsing Trees Ambiguous grammars Resolving ambiguity

Context Free Grammars Non-terminals –Start non-terminal Terminals (tokens) Context Free Rules  Symbol Symbol … Symbol

Example Context Free Grammar 1 S  S ; S 2 S  id := E 3 S  print (L) 4 E  id 5 E  num 6 E  E + E 7 E  (S, E) 8 L  E 9 L  L, E

Derivations Show that a sentence is in the grammar (valid program) –Start with the start symbol –Repeatedly replace one of the non-terminals by a right-hand side of a production –Stop when the sentence contains terminals only Rightmost derivation Leftmost derivation

Example Derivations 1 S  S ; S 2 S  id := E 3 S  print (L) 4 E  id 5 E  num 6 E  E + E 7 E  (S, E) 8 L  E 9 L  L, E S S ; S S ; id := E id := E ; id := E id := num ; id := E id := num ; id := E + E id := num ; id := E + num id := num ; id :=num + num a56b7716

Parse Trees The trace of a derivation Every internal node is labeled by a non-terminal Each symbol is connected to the deriving non- terminal

Example Parse Tree S S ; S S ; id := E id := E ; id := E id := num ; id := E id := num ; id := E + E id := num ; id := E + num id := num ; id :=num + num ; ss s id:=Eid:=E id:=EE+E num

Ambiguous Grammars Two leftmost derivations Two rightmost derivations Two parse trees

A Grammar for Arithmetic Expressions 1 E  E + E 2 E  E * E 3 E  id 4 E  (E)

Drawbacks of Ambiguous Grammars Ambiguous semantics Parsing complexity May affect other phases

Non Ambiguous Grammar for Arithmetic Expressions Ambiguous grammar 1E  E + T 2E  T 3T  T * F 4T  F 5 F  id 6 F  (E) 1 E  E + E 2 E  E * E 3 E  id 4 E  (E)

Non Ambiguous Grammars for Arithmetic Expressions Ambiguous grammar 1E  E + T 2E  T 3T  T * F 4T  F 5 F  id 6 F  (E) 1 E  E + E 2 E  E * E 3 E  id 4 E  (E) 1E  E * T 2E  T 3T  F + T 4T  F 5 F  id 6 F  (E)

Efficient Parsers Pushdown automata Deterministic Report an error as soon as the input is not a prefix of a valid program Not usable for all context free grammars bison context free grammar tokens parser “Ambiguity errors” parse tree

Designing a parser language design context-free grammar design Bison parser (c program)

Kinds of Parsers Top-Down (Predictive Parsing) LL –Construct parse tree in a top-down matter –Find the leftmost derivation –For every non-terminal and token predict the next production –Preorder tree traversal Bottom-Up LR –Construct parse tree in a bottom-up manner –Find the rightmost derivation in a reverse order –For every potential right hand side and token decide when a production is found –Postorder tree traversal

Top-Down Parsing

Bottom-Up Parsing

Example Grammar for Predictive LL Parsing expression  digit | ‘(‘ expression operator expression ‘)’ operator  ‘+’ | ‘*’ digit  ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Parsing Expressions Try every alternative production –For P  A1 A2 … An | B1 B2 … Bm –If A1 succeeds Call A2 If A2 succeeds –Call A3 If A2 fails report an error –Otherwise try B1 Recursive descent parsing Can be applied for certain grammars Generalization: LL1 parsing

Predictive Parser for Arithmetic Expressions Grammar C-code? 1E  E + T 2E  T 3T  T * F 4T  F 5 F  id 6 F  (E)

Summary Context free grammars provide a natural way to define the syntax of programming languages Ambiguity may be resolved Predictive parsing is natural –Good error messages –Natural error recovery –But not expressive enough But LR bottom-up parsing is more expressible