12 April 2013Lecture 1: Interval Constraints Overview1 Interval Constraints Overview Jorge Cruz DI/FCT/UNL April 2013.

Slides:



Advertisements
Similar presentations
Constraint Satisfaction Problems
Advertisements

School on Optimization, Le Croisic, 23-24, March, Hybrid Constraint Solving in ECLiPSe: Framework and Applications Farid AJILI, IC-Parc, Imperial.
1 Constraint Satisfaction Problems A Quick Overview (based on AIMA book slides)
Introduction. IC-Parc2 ECLiPSe Components Constraint Logic Programming system, consisting of  A runtime core Data-driven computation, backtracking, garbage.
ICS-271:Notes 5: 1 Lecture 5: Constraint Satisfaction Problems ICS 271 Fall 2008.
© Imperial College London Eplex: Harnessing Mathematical Programming Solvers for Constraint Logic Programming Kish Shen and Joachim Schimpf IC-Parc.
G53CLP Constraint Logic Programming Modeling CSPs – Case Study I Dr Rong Qu.
Constraint Optimization Presentation by Nathan Stender Chapter 13 of Constraint Processing by Rina Dechter 3/25/20131Constraint Optimization.
Optimal Rectangle Packing: A Meta-CSP Approach Chris Reeson Advanced Constraint Processing Fall 2009 By Michael D. Moffitt and Martha E. Pollack, AAAI.
/425 Declarative Methods - J. Eisner1 Constraint Programming.
Programming with Constraints Jia-Huai You. Subject of Study Constraint Programming (CP) studies the computational models, languages, and systems for solving.
CPSC 322, Lecture 13Slide 1 CSPs: Arc Consistency & Domain Splitting Computer Science cpsc322, Lecture 13 (Textbook Chpt 4.5,4.6) February, 01, 2010.
19 April 2013Lecture 4: Associating Narrowing Functions to Constraints1 Associating Narrowing Functions to Constraints Jorge Cruz DI/FCT/UNL April 2013.
Nikolaj Bjørner Microsoft Research Lecture 3. DayTopicsLab 1Overview of SMT and applications. SAT solving, Z3 Encoding combinatorial problems with Z3.
19 April 2013Lecture 3: Interval Newton Method1 Interval Newton Method Jorge Cruz DI/FCT/UNL April 2013.
1 Optimisation Although Constraint Logic Programming is somehow focussed in constraint satisfaction (closer to a “logical” view), constraint optimisation.
CPSC 322, Lecture 12Slide 1 CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12 (Textbook Chpt ) January, 29, 2010.
CPSC 322, Lecture 13Slide 1 CSPs: Arc Consistency & Domain Splitting Computer Science cpsc322, Lecture 13 (Textbook Chpt 4.5,4.8) February, 02, 2009.
Solvable problem Deviation from best known solution [%] Percentage of test runs ERA RDGR RGR LS Over-constrained.
1 On the Integration of Constraint Propagation and Local Search Pedro Barahona Department of Computer Science Faculty of Science and Technology New University.
Jean-Charles REGIN Michel RUEHER ILOG Sophia Antipolis Université de Nice – Sophia Antipolis A global constraint combining.
Branch and Bound Algorithm for Solving Integer Linear Programming
CS121 Heuristic Search Planning CSPs Adversarial Search Probabilistic Reasoning Probabilistic Belief Learning.
26 April 2013Lecture 5: Constraint Propagation and Consistency Enforcement1 Constraint Propagation and Consistency Enforcement Jorge Cruz DI/FCT/UNL April.
INTCP'06 Interval Analysis Constraint Propagation Applications Organizers : Christophe Jermann, Yahia Lebbah, Djamila Sam-Haroud Committee : Pedro Barahona,
26 April 2013Lecture 6: Problem Solving1 Problem Solving Jorge Cruz DI/FCT/UNL April 2013.
1 Constraint Programming: An Introduction Adapted by Cristian OLIVA from Peter Stuckey (1998) Ho Chi Minh City.
Operations Research Models
Building “ Problem Solving Engines ” for Combinatorial Optimization Toshi Ibaraki Kwansei Gakuin University (+ M. Yagiura, K. Nonobe and students, Kyoto.
ENCI 303 Lecture PS-19 Optimization 2
Computation of Limit Cycles for Uncertain Nonlinear Fractional-order Systems using Interval Constraint Propagation P. S. V. Nataraj & Rambabu Kalla Systems.
Constraint Satisfaction Problems (CSPs) CPSC 322 – CSP 1 Poole & Mackworth textbook: Sections § Lecturer: Alan Mackworth September 28, 2012.
Computational Methods for Design Lecture 4 – Introduction to Sensitivities John A. Burns C enter for O ptimal D esign A nd C ontrol I nterdisciplinary.
Computing & Information Sciences Kansas State University Wednesday, 15 Oct 2008CIS 530 / 730: Artificial Intelligence Lecture 20 of 42 Wednesday, 15 October.
Constraint Propagation as the Core of Local Search Nikolaos Pothitos, George Kastrinis, Panagiotis Stamatopoulos Department of Informatics and Telecommunications.
CP Summer School Modelling for Constraint Programming Barbara Smith 2. Implied Constraints, Optimization, Dominance Rules.
Hande ÇAKIN IES 503 TERM PROJECT CONSTRAINT SATISFACTION PROBLEMS.
Artificial Intelligence CS482, CS682, MW 1 – 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis,
Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent Systems Makoto Yokoo Kyushu University lang.is.kyushu-u.ac.jp/~yokoo/
1 2010/2011 Semester 2 Introduction: Chapter 1 ARTIFICIAL INTELLIGENCE.
Solving Problems by searching Well defined problems A probem is well defined if it is easy to automatically asses the validity (utility) of any proposed.
1 Constraint Reasoning for Differential Models Jorge Cruz CENTRIA - Centre for Artificial Intelligence DI/FCT/UNL June 2009.
Chapter 5 Constraint Satisfaction Problems
MDPs (cont) & Reinforcement Learning
Stochastic greedy local search Chapter 7 ICS-275 Spring 2009.
Chapter 2) CSP solving-An overview Overview of CSP solving techniques: problem reduction, search and solution synthesis Analyses of the characteristics.
Arc consistency AC5, AC2001, MAC. AC5 A generic arc-consistency algorithm and its specializations AIJ 57 (2-3) October 1992 P. Van Hentenryck, Y. Deville,
Arc Consistency CPSC 322 – CSP 3 Textbook § 4.5 February 2, 2011.
1. 2 Outline of Ch 4 Best-first search Greedy best-first search A * search Heuristics Functions Local search algorithms Hill-climbing search Simulated.
Robust Planning using Constraint Satisfaction Techniques Daniel Buettner and Berthe Y. Choueiry Constraint Systems Laboratory Department of Computer Science.
Optimization in Engineering Design 1 Introduction to Non-Linear Optimization.
Computing & Information Sciences Kansas State University Friday, 08 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 7 of 42 Friday, 08 September.
DEPARTMENT/SEMESTER ME VII Sem COURSE NAME Operation Research Manav Rachna College of Engg.
Roman Barták (Charles University in Prague, Czech Republic) ACAT 2010.
Honors Track: Competitive Programming & Problem Solving Seminar Topics Kevin Verbeek.
CSCI5240 Combinatorial Search and Optimization with Constraints
Computer Science cpsc322, Lecture 13
Consistency Methods for Temporal Reasoning
3.3 Graphs of Nonlinear Inequalities
CS 188: Artificial Intelligence
Constraint Propagation
Computer Science cpsc322, Lecture 13
Integer Programming (정수계획법)
Artificial Intelligence
SOLUTION OF NONLINEAR EQUATIONS
Integer Programming (정수계획법)
Constraint satisfaction problems
Domain Splitting CPSC 322 – CSP 4 Textbook §4.6 February 4, 2011.
Constraint satisfaction problems
Consistency algorithms
Presentation transcript:

12 April 2013Lecture 1: Interval Constraints Overview1 Interval Constraints Overview Jorge Cruz DI/FCT/UNL April 2013

Lecture 1: Interval Constraints Overview2 Continuous Constraint Satisfaction Problems Lecture 1: Interval Constraints Overview Pruning and Branching Representation of Continuous Domains Continuous Constraint Reasoning Solving Continuous CSPs Consistency Criteria Constraint Propagation Practical Examples Course Structure 12 April 2013

Lecture 1: Interval Constraints Overview3 Constraint Satisfaction Problem (CSP): set of variables set of domains set of constraints Solution: assignment of values which satisfies all the constraints Continuous CSP (CCSP): Intervals of reals [a,b] Numeric (=, ,  ) Many Constraint Reasoning GOAL Find Solutions; Find an enclosure of the solution space 12 April 2013

Lecture 1: Interval Constraints Overview4 Continuous Constraint Satisfaction Problem (CCSP): Solution: assignment of values which satisfies all the constraints Constraint Reasoning GOAL Find solutions; Find an enclosure of the solution space z [1,5] y [ ,  ] [0,2] x y = x 2 z  x x+y+z  5.25 Interval Domains Numerical Constraints Many Solutions x=1, y=1, z=1... x=1, y=1, z= April 2013

Lecture 1: Interval Constraints Overview5 Representation of Continuous Domains F-intervalR F [r 1..r 2 ] [f 1.. f 2 ] r [  r ..  r  ] F-box Canonical solution 12 April 2013

Lecture 1: Interval Constraints Overview6 box split Solving CCSPs: Branch and Prune algorithms constraint propagation Safe Narrowing Functions Strategy for isolate canonical solutions provide an enclosure of the solution space depends on a consistency requirement 12 April 2013

Lecture 1: Interval Constraints Overview7 Constraint Reasoning (vs Simulation) Uses safe methods for narrowing the intervals accordingly to the constraints of the model Represents uncertainty as intervals of possible values xy [1,5] [0,2] y = x 2 00 Simulation: no y  4? x  1? Constraint Reasoning: [1,2] [1,4] 12 April 2013

Lecture 1: Interval Constraints Overview8 How to narrow the domains? Safe methods are based on Interval Analysis techniques xy [1,5] [0,2] y = x 2 x[a,b] x2[a,b]2=x[a,b] x2[a,b]2= [0,  max(a 2,b 2 )  ] [  min(a 2,b 2 ) ,  max(a 2,b 2 )  ] if a  0  b otherwise If x  [0,2] Then y  [0,2] 2 =[0,  max(0 2,2 2 )  ]=[0,4]  y  [1,5]  y  [0,4]  y  [1,5]  [0,4]  y  [1,4] 12 April 2013

Lecture 1: Interval Constraints Overview9 How to narrow the domains? Safe methods are based on Interval Analysis techniques xy [1,5] [0,2] y = x 2 x[a,b] x2[a,b]2=x[a,b] x2[a,b]2= [0,  max(a 2,b 2 )  ] [  min(a 2,b 2 ) ,  max(a 2,b 2 )  ] if a  0  b otherwise NF y=x² : Y’  Y  X 2 12 April 2013

Lecture 1: Interval Constraints Overview10 How to narrow the domains? Safe methods are based on Interval Analysis techniques xy [1,5] [0,2] y = x 2 If x  [0,2] and y  [1,5] Then yy  y  [1,5]  [0,4]  y  [1,4] y  x 2 = 0F(Y) = Y  [0,2] 2 F’(Y) = 1  y  Y  x  [0,2] y  x 2 =0  y  Interval Newton method 12 April 2013

Lecture 1: Interval Constraints Overview11 How to narrow the domains? Safe methods are based on Interval Analysis techniques xy [1,5] [0,2] y = x 2 NF y=x² : Y’  Y  y  x 2 = 0F(Y) = Y  [0,2] 2 F’(Y) = 1  y  Y  x  [0,2] y  x 2 =0  y  Interval Newton method 12 April 2013

Lecture 1: Interval Constraints Overview12 How to narrow the domains? Safe methods are based on Interval Analysis techniques xy [1,5] [0,2] y = x 2 NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) + NF y=x² : Y’  Y  NF y=x² : X’  X  contractility Y’  Y X’  X correctness  y  Y y  Y’  ¬  x  X y=x 2  x  X x  X’  ¬  y  Y y=x 2 12 April 2013

Lecture 1: Interval Constraints Overview13 [1,5] [ ,  ] [0,2] z y x y = x 2 z  x x+y+z  5.25 NF y=x² : Y’  Y  X 2 NF x+y+z  5.25 : X’  X  ([ , 5.25 ]  Y  Z) NF x+y+z  5.25 : Y’  Y  ([ , 5.25 ]  X  Z) NF x+y+z  5.25 : Z’  Z  ([ , 5.25 ]  X  Y) NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) + NF z  x : X’  X  (Z  [ 0,  ]) NF z  x : Z’  Z  (X  [ 0,  ])  [1,4]  [1,2]     [ , 3.25 ]  [ 1, 3.25 ] Solving a Continuous Constraint Satisfaction Problem Constraint Propagation 12 April 2013

Lecture 1: Interval Constraints Overview14 [1,5] [ ,  ] [0,2] z y x y = x 2 z  x x+y+z  5.25  [1,4]  [1,2]    [ , 3.25 ]  [ 1, 3.25 ] Solving a Continuous Constraint Satisfaction Problem Constraint Propagation  [ 1, 3.25 ]  [ 1,  3.25 ]       NF y=x² : Y’  Y  X 2 NF x+y+z  5.25 : X’  X  ([ , 5.25 ]  Y  Z) NF x+y+z  5.25 : Y’  Y  ([ , 5.25 ]  X  Z) NF x+y+z  5.25 : Z’  Z  ([ , 5.25 ]  X  Y) NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) + NF z  x : X’  X  (Z  [ 0,  ]) NF z  x : Z’  Z  (X  [ 0,  ]) 12 April 2013

Lecture 1: Interval Constraints Overview15 z y x y = x 2 z  x x+y+z  5.25 [ 1, 3.25 ] Solving a Continuous Constraint Satisfaction Problem Constraint Propagation [ 1, 3.25 ] [ 1,  3.25 ] x y z  3.25 y = 3.25 y = x 2  x+y+z  5.25  z  2-  3.25 <  3.25 z  x 111    x + Branching Consistency Criterion 12 April 2013

Lecture 1: Interval Constraints Overview16 Solving a Continuous Constraint Satisfaction Problem Constraint Propagation + Branching Consistency Criterion Local Consistency (2B-Consistency) Constraint Propagation Higher Order Consistencies (kB-Consistency) Constraint Propagation + Branching 3B-Consistency: if 1 bound is fixed then the problem is Local Consistent x y z [ 1,  3.25 ] [ 1, 3.25 ] not 3B-Consistent x y z [  3.25 ] [ 1, 3.25 ] not Local Consistent [ 1, 1.5 ] [ 1, 2.25 ][ 1, 3.25 ] 3B-Consistent 12 April 2013

Lecture 1: Interval Constraints Overview17 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] y = x 2 x =  y ½ Constraint propagation define set of narrowing functions: y = 2x + [4,  ] x = ½y  [2,  ] NF y  2x+4 : Y’  Y  (2X+[4,  ]) NF y  2x+4 : X’  X  (½Y  [2,  ]) NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) + x y 12 April 2013

Lecture 1: Interval Constraints Overview18 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Constraint propagation apply the narrowing functions to prune box: NF y  2x+4 : Y’  Y  (2X+[4,  ]) NF y  2x+4 : X’  X  (½Y  [2,  ]) NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) + x y [-2,2]  [-2,10] [-2,2]  ([-2,10]  [-2,2] 2 ) [-2,2]  ([-2,10]  [0,4]) [-2,2]  [0,4] 12 April 2013

Lecture 1: Interval Constraints Overview19 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Constraint propagation x y apply the narrowing functions to prune box: [-2,2]  [0,4] ([-2,2]  [0,4] ½ )  ([-2,2]  [0,4] ½ )  [0,4] + ([-2,2]  [-2,0])  ([-2,2]  [0,2])  [0,4] + NF y  2x+4 : Y’  Y  (2X+[4,  ]) NF y  2x+4 : X’  X  (½Y  [2,  ]) NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) 12 April 2013

Lecture 1: Interval Constraints Overview20 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Constraint propagation x y apply the narrowing functions to prune box: [-2,2]  [0,4] [-2,2]  ([0,4]  (2[-2,2] +[4,  ])) [-2,2]  ([0,4]  ([-4,4] +[4,  ])) [-2,2]  ([0,4]  [0,  ]) NF y  2x+4 : Y’  Y  (2X+[4,  ]) NF y  2x+4 : X’  X  (½Y  [2,  ]) NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) 12 April 2013

Lecture 1: Interval Constraints Overview21 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Constraint propagation x y apply the narrowing functions to prune box: [-2,2]  [0,4] [-2,0]  [0,4] ([-2,2]  (½[0,4]  [2,  ]))  [0,4] ([-2,2]  ([0,2]  [2,  ]))  [0,4] ([-2,2]  [ ,0])  [0,4] NF y  2x+4 : Y’  Y  (2X+[4,  ]) NF y  2x+4 : X’  X  (½Y  [2,  ]) NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) 12 April 2013

Lecture 1: Interval Constraints Overview22 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Constraint propagation x y obtained the box: [-2,0]  [0,4] (fixed point) NF y  2x+4 : Y’  Y  (2X+[4,  ]) NF y  2x+4 : X’  X  (½Y  [2,  ]) NF y=x² : Y’  Y  X 2 NF y=x² : X’  (X  Y ½ )  (X  Y ½ ) 12 April 2013

Lecture 1: Interval Constraints Overview23 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Split box x y [-2,0]  [0,2] [-2,0]  [2,4] 12 April 2013

Lecture 1: Interval Constraints Overview24 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Split box x y [-2,0]  [0,2] (fixed point) prune [-1.415,-1.082]  [1.171,2.000] [-2,0]  [2,4] 12 April 2013

Lecture 1: Interval Constraints Overview25 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] Split box x y [-2,0]  [0,2] (fixed point) prune [-1.415,-1.082]  [1.171,2.000] [-2,0]  [2,4] (fixed point) prune [-2.000,-1.414]  [2.000,4.000] 12 April 2013

Lecture 1: Interval Constraints Overview26 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] When to stop? x y Consistency requirement + [-1.415,-1.082]  [1.171,2]  [-2,-1.414]  [2,4] = [-2,-1.082]  [1.171,4] if we stop now: 12 April 2013

Lecture 1: Interval Constraints Overview27 Example: y = x 2 y  2x + 4 Constraints: Variables: x, y Domains: [-2,2]  [-2,10] When to stop? x y smallest box containing all canonical solutions Consistency requirement 12 April 2013

Lecture 1: Interval Constraints Overview28 A practical example: Population (millions) Time (years) Logistic Model Optimization Problem: min with result: x 0 = a k = b r = c 12 April 2013

Lecture 1: Interval Constraints Overview29 A practical example: Population (millions) Time (years) Logistic Model CCSP: result: 12 April 2013

Lecture 1: Interval Constraints Overview30 Lecture 1: Interval Constraints Overview Course Structure: Constraints on Continuous Domains Lecture 2: Intervals, Interval Arithmetic and Interval Functions Lecture 3: Interval Newton Method Lecture 4: Associating Narrowing Functions to Constraints Lecture 5: Constraint Propagation and Consistency Enforcement Lecture 6: Problem Solving 12 April 2013

Lecture 1: Interval Constraints Overview31 Bibliography Jorge Cruz. Constraint Reasoning for Differential ModelsConstraint Reasoning for Differential Models Vol: 126 Frontiers in Artificial Intelligence and Applications, IOS Press 2005 Ramon E. Moore. Interval Analysis Prentice-Hall 1966 Eldon Hansen, G. William Walster. Global Optimization Using Interval AnalysisGlobal Optimization Using Interval Analysis Marcel Dekker 2003 Jaulin, L., Kieffer, M., Didrit, O., Walter, E. Applied Interval AnalysisApplied Interval Analysis Springer 2001 Important Links Interval Computations A primary entry point to items concerning interval computations. COCONUT - COntinuous CONstraints Updating the Technology Project to integrate techniques from mathematical programming, constraint programming, and interval analysis. 12 April 2013

Lecture 1: Interval Constraints Overview32 Papers O. Lhomme. Consistency Techniques for Numeric CSPs. In Proceedings of 13th IJCAI, 232–238, F. Benhamou, D. A. McAllester, and P. Van Hentenryck. CLP(Intervals) Revisited. In SLP, 124–138, F. Benhamou and W. Older. Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming, pages 1–24, P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a branch and prune approach. SIAM J. Num. Anal., 34(2):797–827, F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget. Revising Hull and Box Consistency. In Proceedings of ICLP, 230–244, Las Cruces, New Mexico, USA. The MIT Press, L. Granvilliers, J. Cruz, and P. Barahona, Parameter Estimation Using Interval Computations, SIAM Journal on Scientific Computing (SISC) Special Issue on Uncertainty Quantification, 26(2): , J. Cruz and P. Barahona, Constraint Reasoning in Deep Biomedical Models, Journal of Artificial Intelligence in Medicine, 34:77-88, Elsevier, April 2013

Lecture 1: Interval Constraints Overview33 Papers G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming - CP 2007, 635–650, I. Araya, B. Neveu, G. Trombettoni. Exploiting Common Subexpressions in Numerical CSPs, In Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming - CP 2008, Springer, 342– 357, P. Barahona and L. Krippahl, Constraint Programming in Structural Bioinformatics, Constraints, 13(1-2):3-20, Springer, M. Rueher, A. Goldsztejn, Y. Lebbah, and C. Michel. Capabilities of Constraint Programming in Rigorous Global Optimization. International Symposium on Nonlinear Theory and Its Applications - Nolta 2008, E. Carvalho, J. Cruz, and P. Barahona. Probabilistic continuous constraint satisfaction problems. In Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence - Vol. 2, , IEEE X. H. Vu, H. Schichl, D. Sam-Haroud. Interval propagation and search on directed acyclic graphs for numerical constraint solving, Journal of Global Optimization, 45:499–531, April 2013

Lecture 1: Interval Constraints Overview34 Papers G. Chabert and L. Jaulin. Hull Consistency under Monotonicity, In Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming - CP 2009, Springer, 188–195, I. Araya, G. Trombettoni, B. Neveu. Filtering numerical CSPs using well- constrained subsystems, In Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming - CP 2009, Springer, 158–172, A. Goldsztejn, C. Michel, M. Rueher. Efficient handling of universally quantified inequalities, Constraints, 14(1): 117–135, A. Goldsztejn, F. Goualard. Box Consistency through Adaptive Shaving, Proceedings of the 25th Annual ACM Symposium on Applied Computing (CSP track), ACM, I. Araya, G. Trombettoni, B. Neveu. Making adaptive an interval constraint propagation algorithm exploiting monotonicity. In Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming - CP 2010, Springer, 61-68, April 2013

Lecture 1: Interval Constraints Overview35 Papers B. Neveu, G. Trombettoni, G. Chabert, Improving inter-block backtracking with interval Newton, Constraints, 15:93–116, J. M. Normand, A. Goldsztejn, M. Christie, F. Benhamou. A branch and bound algorithm for numerical Max-CSP, Constraints, 15(2): , E. Carvalho, J. Cruz, and P. Barahona. Probabilistic Constraints for Reliability Problems, Proceedings of the 2010 ACM Symposium on Applied Computing, ACM, , A. Goldsztejn, L. Granvilliers, A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions, Constraints, 15(2): , E. Carvalho, J. Cruz, and P. Barahona. Reasoning with Uncertainty in Continuous Domains, Integrated Uncertainty Management and Applications, Advances in Intelligent and Soft Computing, 68: , Springer, April 2013