Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam The dynamics of isotopes.

Slides:



Advertisements
Similar presentations
DEB theoryDEB theory micro-lectures Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Advertisements

The energetics of maturation Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Amsterdam 2012/04/23.
 Dynamic Energy Budget Theory Tânia Sousa with contributions from :Bas Kooijman.
Dynamic Energy Budget theory 1 Basic Concepts 2 Standard DEB model 3 MetabolismMetabolism 4 Univariate DEB models 5 Multivariate DEB models 6 Effects of.
Warm Up What are the 7 life processes?. Life Functions.
Laure Pecquerie Laboratoire des Sciences de l’Environnement Marin UMR LEMAR, IRD 21 st -22 nd April 2015, DEB Course 2015, Marseille.
Concluding remarks DEB symp on Metabolic Organisation Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Succession in a water column An adapting ecosystem maneuvering between autotrophy and heterotrophy Jorn Bruggeman Theoretical biology Vrije Universiteit.
Scaling relationships based on partition coefficients & body size have similarities & interactions Bas Kooijman Dept theoretical biology Vrije Universiteit.
Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.
Mechanistic modeling of zebrafish metabolism in relationship to food level and the presence of a toxicant (uranium) S. Augustine B.Gagnaire C. Adam-Guillermin.
Dynamic Energy Budget (DEB) theory by Elke, Svenja and Ben.
Energetics & Stoichiometry of plankton production Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
The effect of food composition on feeding, growth and reproduction of bivalves Sofia SARAIVA 1,3, Jaap VAN DER MEER 1,2, S.A.L.M. KOOIJMAN 2, T. SOUSA.
Reserve dynamics & social interactions in feeding Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Tjalling Jager Dept. Theoretical Biology How to simplify biology to interpret effects of stressors.
Applications of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Iraklion, 2010/05/12.
Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Tjalling Jager molecular genetics evolutionary ecology dynamic energy budgets Mechanisms behind life- history trade-offs.
A biodiversity-inspired approach to marine ecosystem modelling Jorn Bruggeman Bas Kooijman Theoretical biology Vrije Universiteit Amsterdam.
Lecture 4 Covariation of parameter values. Scales of life 8a Life span 10 log a Volume 10 log m 3 earth whale bacterium water molecule life on earth whale.
Quantifying the organic carbon pump Jorn Bruggeman Theoretical Biology Vrije Universiteit, Amsterdam PhD March 2004 – 2009.
DEB theory as framework for quantifying effects of noise on cetaceans Bas Kooijman Dept Theoretical Biology Washington, 2004/03/05.
Covariation & estimation of pars intro to practical part of DEB course 2011 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
From molecules to populations energy budgets in the causality of toxic effects Tjalling Jager Dept. Theoretical Biology.
Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Elke Zimmer, PhD-Project DEB-1 Supervisors: Tjalling Jager, Bas Kooijman (VU Amsterdam) Co-Supervisor: Virginie Ducrot (INRA, Rennes) Elke Zimmer CREAM.
Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Current research on DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
environmental conditions
DEB-based body mass spectra
Population consequences of individual-level mechanisms through dynamic energy budgets Tjalling Jager Dept. Theoretical Biology.
1-  maturity maintenance maturity offspring maturation reproduction Basic DEB scheme foodfaeces assimilation reserve feeding defecation structure somatic.
Roadmap for remaining lectures: 1.Combine the abiotic world (Earth + Climate) with the biotic world (life). A. First talk about “Ecosystems”, and generally.
Modelkey: VUA-TB, WP Effect-3 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Application of DEB theory to a particular organism in (hopefully somewhat) practical terms Laure Pecquerie University of California Santa Barbara.
Standard DEB model summary of tele-part of DEB course 2011 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam DEB theory & ecotox.
Lecture 2 Standard DEB model. 1-  maturity maintenance maturity offspring maturation reproduction Standard DEB model foodfaeces assimilation reserve.
Effects of combined stressors Tjalling Jager, Bas Kooijman Dept. Theoretical Biology From individuals to population using dynamic energy budgets.
Nomiracle WP 4.1: Modelling Effects of mixtures of compounds EU Integrated project NoMiracle: Novel Methods for Integrated Risk.
Making sense of sub-lethal mixture effects Tjalling Jager, Tine Vandenbrouck, Jan Baas, Wim De Coen, Bas Kooijman.
From developmental energetics to effects of toxicants: a story born of zebrafish and uranium S. Augustine B.Gagnaire C. Adam-Guillermin S. A. L. M. Kooijman.
Conc-response vs biology-based approaches in ecotoxicity Modeling effects of mixtures of chemical compounds Jan Baas, Tjalling Jager & Bas Kooijman (VU-Theor.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam What the egg can tell.
DEB theoryDEB theory micro-lectures Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
UNIT 3: MATTER ENERGY LIFE. objectives Students can: 1. Describe matter, atoms and molecules and give simple examples of the four major kinds of organic.
Chemistry of Living Things. Homeostasis: Homeostasis: A balanced state in an organism’s body. Failure to maintain homeostasis results in disease or death.
Tjalling Jager Dept. Theoretical Biology Assessing ecotoxicological effects on a mechanistic basis the central role of the individual.
Theoretical Ecology course 2015 DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Reactants and Products  A chemical reaction is the process by which atoms or groups of atoms in substances are reorganized into different substances 
What is DEB theory? Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Melbourne 2012/08/06.
Mass aspects & scaling Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Melbourne 2012/08/06 Contents.
 Dynamic Energy Budget Theory - I Tânia Sousa with contributions from :Bas Kooijman.
Biology-Based Modelling Tjalling Jager Bas Kooijman Dept. Theoretical Biology.
 Dynamic Energy Budget Theory - I Tânia Sousa with contributions from :Bas Kooijman.
Chemical Reactions A chemical equation lists all the elements in the reactants and in the products they form – Must obey Conservation of Matter, Mass,
Components of an Ecosystem Notes. An ecosystem consists of all of the living organisms and all of the non- living elements that interact in an area.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Add_my_pet a data and.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Estimating DEB parameters.
Chapter 2: Ecology Flushing High School Trisha Ferris.
The DEB-theory and its applications in Ecotoxicology
Theoretical Ecology course 2012 DEB theory
Dynamic Energy Budget theory
Scope for quantitative bioeconomics
The scaling of metabolism in the perspective of DEB theory
Models in stress research
The Characteristics of Life
DEB applications for Aquaculture
A biodiversity-inspired approach to marine ecosystem modelling
Presentation transcript:

Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam The dynamics of isotopes in the standard DEB model Nantes, 2008/05/22

Macrochemical reaction eq

Notation

Reshuffling

Fractionation from pools & fluxes Examples uptake of O 2, NH 3, CO 2 (phototrophs) evaporation of H 2 O Mechanism velocity e = ½ m c 2 binding probability to carriers Examples anabolic vs catabolic aspects assimilation, dissipation, growth Mechanism binding strength in decomposition

Fractionation from pools & fluxes

Oxygenic photosynthesis CO H 2 O  CH 2 O + H 2 O + O 2 Reshuffling of 18 O Fractionation of 13 C

C 4 plants Fractionation weak in C 4 plants strong in C 3 plants

Standard DEB scheme 3 1-  maturity maintenance maturity offspring maturation reproduction foodfaeces assimilation reserve feeding defecation structure somatic maintenance growth 

Macrochemical reaction eq

Isotopes in products Product flux: fixed fractions of assimilation, dissipation, growth Assumptions: no fractionation at separation from source flux separation is from anabolic sub-flux catabolic flux anabolic flux product flux reservestructure

Change in isotope fractions For mixed pool j = E, V (reserve, structure) For non-mixed product j = Ø (otolith)

Isotopes in biomass & otolith time, d otolith length body length opacity temperature f,ef,e 

DEB tele course Free of financial costs; some 250 h effort investment Program for 2009: Feb/Mar general theory April symposium in Brest Sept/Oct case studies & applications Target audience: PhD students We encourage participation in groups that organize local meetings weekly Software package DEBtool for Octave/ Matlab freely downloadable Slides of this presentation are downloadable from Cambridge Univ Press 2009 Marianne: thank you of the organisation Audience : thank you for your attention

Dynamic Energy Budget theory for metabolic organisation S.A.L.M. Kooijman Third Edition

Toc for DEB3 1 BASIC CONCEPTS Individuals as dynamic systems; homeostasis is key to life; body size and composition; metabolic modes; effects of temperature on rates. 2 STANDARD DEB MODEL IN TIME, LENGTH & ENERGY Assimilation; reserve dynamics follows from homeostasis; the k-rule for allocation to soma; dissipation excludes overheads of assimilation and growth; growth of structure; reproduction exports reserve; estimation of parameter values I. 3 CHEMICAL TRANSFORMATIONS IN CELLS A weird world at small scale; classes of compounds in organisms; macrochemical reaction equations; enzyme kinetics revisited; classification of types of processing and of compounds; number of SUs affects transformation rates; inhibition and co- metabolism; supply versus demand kinetics; networking via handshaking.} 4 UNIVARIATE DEB MODELS Changing feeding conditions; changing shapes; conservation of elements; carbon, water, dioxygen and nitrogen balance; conservation of energy; thermodynamic aspects; micro-chemical reaction equations; isotope dynamics; product formation; parameter estimation II; trajectory reconstruction. 5 MULTIVARIATE DEB MODELS Extensions to more than one substrate, reserve and structural mass. Photosynthesis and plant development, simultaneous nutrient limitation, calcification. 6 EFFECTS OF NON-FOOD COMPOUNDS Ageing; uptake kinetics; energetics affects kinetics; toxicants affect energetics; 7 EXTENSIONS OF DEB MODELS Details of specific processes, such as feeding, digestion, cell wall synthesis, organelle-cytosol interactions, pupae; changing parameter values; adaptation; mother-foetus interactions. 8 CO-VARIATION OF DEB PARAMETER VALUES Intra- and inter-specific parameter variations; interactions between QSARs and body size scaling relationships; allocation strategies. 9 LIVING TOGETHER Trophic interactions between organisms; population dynamics; food chains and webs, canonical communities; system earth and climate. 10 EVOLUTION Before the first cells; early substrates and taxa; evolution of individuals as dynamic systems; merging of individuals in steps; multicellularity and body size; from supply to demand systems; life builds on life. 11 EVALUATION Conceptual aspects of energetics; DEB models have many empirical models as special cases; comparison with other approaches.

ERC Advanced grant 776 Life Science proposals, max 3.5 M€/ proposal 34 % of budget for Life Sciences, 517 M€ budget for first call Prob: 0.34 × 517/ 776 × 3 = First selection medio June, final selection early Sept, ID panel meeting end Sept DEBtheory proposal: 50 man-year, 5 year run-time, 3.4 M€ 2 PD + 4 PhD A’dam, 2 PD + 1 PhD Lisbon, 1 PD + 2 PhD Marseille DEB helpdesk (AQUAdeb): 30 % of workload + 10 % Tjalling (DEBtox) 150 k€ for symposia/courses