Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.

Slides:



Advertisements
Similar presentations
Identify how elements are arranged on the Periodic Table. F Fluorine atu 9 How many particles in the nucleus? Protons? Neutrons? Electrons? Now.
Advertisements

Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Chapter 7 periodic trends
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
THE PERIODIC TABLE.
The Nature of Molecules
Periodic Table.
Periodic Table – Filling Order
THE PERIODIC TABLE.
Energy Level Diagrams E
Neutron (no charge) Hydrogen 1 Proton 1 Electron Oxygen 8 Protons 8 Neutrons 8 Electrons a. b. proton (positive charge) electron (negative charge) Copyright.
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
H 1 N 7 P 15 As 33 Sb 51 Bi 83 O 8 S 16 Se 34 Te 52 Po 84 F 9 Cl 17 Br
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
Chemistry Notes Foundations of the Periodic Table.
Ions Wednesday January 8, 2014
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Organization of The Periodic Table Mrs. Russotto.
Chapter 6: The Periodic Table
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Modern Periodic Table Objective:
Electron Configuration Filling-Order of Electrons in an Atom.
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Electron Configuration
1 Hydro gen 1 3 Li Lithi um 2 1 Na Sodiu m 3 1919 K Potas sium 4 3737 Rb Rubid ium 5 5 Cs Cesiu m 6 8787 Fr Franc ium 7 4 Be Beryl lium 1212 Mg Magne sium.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
1.7 Trends in the Periodic Table
The Periodic Table and Periodic Law
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemeketa Community College
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
KS4 Chemistry The Periodic Table.
Groups of Elements 1A 8A H He 2A 3A 4A 5A 6A 7A Li Be B C N O F Ne Na
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Periodic Table of the Elements
ТАБЛИЦА Б. Е. ЛИПОВА «STRUCTURE OF ATOMIC NUCLEUS”
Electron Configuration
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
The Periodic Table Part I – Categories of Elements
1.5 Periodic Table: History & Trends
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko

Plan Intoduction Intoduction Metod of calculations Metod of calculations Phenomenological formula for α-decay half-lives Phenomenological formula for α-decay half-lives Results Results a) One-quasiparticle excitations a) One-quasiparticle excitations b) Systematic b) Systematic c) α-decay chains c) α-decay chains Conclusions Conclusions

3 Li 11 Na 19 K 37 Rb 1H1H 55 Cs 87 Fr 4 Be 12 Mg 38 Sr 20 Ca 56 Ba 88 Ra 39 Y 21 Sc 57 La * 89 Ac + 40 Zr 22 Ti 72 Hf 41 Nb 23 V 73 Ta 42 Mo 24 Cr 74 W 43 Tc 25 Mn 75 Re 44 Ru 26 Fe 76 Os 45 Rh 27 Co 77 Ir 46 Pd 28 Ni 78 Pt 47 Ag 29 Cu 79 Au 48 Cd 30 Zn 80 Hg 5B5B 5B5B 31 Ga 13 Al 49 In 81 Tl 6C6C 6C6C 32 Ge 14 Si 50 Sn 82 Pb 7N7N 7N7N 33 As 15 P 51 Sb 83 Bi 8O8O 8O8O 34 Se 16 S 52 Te 84 Po 9F9F 9F9F 35 Br 17 Cl 53 I 85 At 10 Ne 18 Ar 36 Kr 54 Xe 2 He 86 Rn 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg 112 Cn Fm 101 Md 102 No 103 Lr 68 Er 69 Tm 70 Yb 71 Lu + Actinides * Lanthanides MENDELEYEV PERIODIC TABLE OF THE ELEMENTS Transactinides 89 Ac Db

ZXNZXN A Z-2 X N-2 A-4 γ Q th Q t,th E p E d α g.s. α

Method of the calculations Yukawa-plus-exponetial model Strutinski shell correction BCS pairing approximation Woods-Saxon potential MacroscopicMicroscopic

The shape of a nucleus Axial symmetric nuclei:

β 3 = β 4 = β 5 = β 6 = β 7 = β 8 =0. β 2 = 0

β 3 = β 4 = β 5 = β 6 = β 7 = β 8 =0. β 2 = 0.2

β 3 = β 4 = β 5 = β 6 = β 7 = β 8 =0. β 2 = 0.3

β 3 = β 4 = β 5 = β 6 = β 7 = β 8 =0. β 2 = 0.4

β 3 = β 5 = β 6 = β 7 = β 8 =0. β 2 = 0.4 β 4 = 0.1

β 3 = β 5 = β 6 = β 7 = β 8 =0. β 2 = 0.4 β 4 = 0.2

β 3 = β 5 = β 7 = β 8 =0. β 2 = 0.4 β 4 = 0.2 β 6 = 0.1

β 3 = β 5 = β 7 =0. β 2 = 0.4 β 4 = 0.2 β 6 = 0.1 β 8 =0.1

Shell efects

One-quasiparticle excitations λnλnλnλn 249 Cf E MeV

One-quasiparticle excitations λnλnλnλn 249 Cf E MeV

Phenomenological formula for α-decay half-lives log 10 T α (Z,N) = a Z (Q α ) -1/2 + b Z + c log 10 T α (Z,N) = a Z (Q α - E p ) -1/2 + b Z + c log 10 T α (Z,N) = (a Z + d) (Q α ) -1/2 + b Z + c Viola-Seaborg formula : for e-e for o-e log 10 T α (Z,N) = a Z (Q α - E n ) -1/2 + b Z + c for e-o log 10 T α (Z,N) = a Z (Q α - E np ) -1/2 + b Z + c for o-o E np = E n + E p E np = E n + E p

Results

Nuclein rmsnpe-e o-e e-o o-o Z = N =

Nuclein rms e-e o-e e-o o-o

Z=93 Ns.p. (teor)s.p. (eksp) 1385[642](5) 1405[642](5+) 1425[642] [642] [642] [642](5+) 1505[642](5-) Z=95 Ns.p. (teor)s.p. (eksp) 1425[523]5(-) 1445[523](5)- 1465[523] [523] [642](5+) 1523[521](5) Z=105 Ns.p. (teor)s.p. (eksp) 1529[624](9+) Theoretical and experimental spins in a ground state

T α exp T α th Q α exp MeV Q α th MeV Q α tr th MeV 271 Ds 1.1 ms 0.39 ms Hs 59 ms 0.25 s Sg 0.31 s 0.93 s Rf 3.1 s 0.59 s

T α exp T α th Q α exp MeV Q α th MeV Q α tr th MeV 269 Ds 179 µs 40 µs Hs 701 µs 4.7 ms Sg 61 ms 96 ms Rf 9.4 s 64 s No 92.4 s 90.8 s

Summary Quantum characteristics of most experimentally known ground states of analyzed here odd-A nuclei (in 24 of 38 cases for proton-odd and in 23 for 34 cases for neutron-odd nuclei) are reproduced by the calculations.. Energy of known lowest nucleon excited states are reproduced by the applied model within an average accuracy of about 200 keV. Sensitivity of single-particle excitation energies to changes of such a quantity as the equilibrium deformation of a nucleus is rather large. Q α exp A new, simple phenomenological formula for description of α-decay half-lives of heaviest e-e, o-e, e-o and o-o nuclei uses only 5 adjustable parameters. The formula allows one to describe Texp of 61 e-e nuclei roughly within a factor of 1.3, 45 o-e nuclei within a factor of 2.1, 55 e-o nuclei within a factor of 3.2 and 40 o-o nuclei within a factor of 4.0, on the average, when Q α exp is taken. Q α th The accuracy of the mentioned above phenomenological formula decreases by a factor of about 4, when theoretical values of Q α th are used. 269 Ds and 271 Ds It is found that description of the 269 Ds and 271 Ds chains data is rather good.