Sacha Kopp, Univ. Texas -- Austin 1 Search for CP in Rare B Decays Sacha E. Kopp, University of Texas – Austin for the CLEO Collaboration.

Slides:



Advertisements
Similar presentations
Phi-Psi, Feb.-Mar., 2006, S.Uehara1 Experimental studies of charmonia in two-photon collisions at Belle S.Uehara (KEK) for the Belle Collaboration e +
Advertisements

Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
EPS 2003 Conference Aachen, Germany Eugeni Graugés (U.B) for the BaBar Collaboration Radiative Penguin BaBar B  K *  B  , B   and B.
Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
Measurements of sin2  from B-Factories Masahiro Morii Harvard University The BABAR Collaboration BEACH 2002, Vancouver, June 25-29, 2002.
August 12, 2000DPF Search for B +  K + l + l - and B 0  K* 0 l + l - Theoretical predictions and experimental status Analysis methods Signal.
Search for 7-prong  Decays Ruben Ter-Antonyan on behalf of the BaBar Collaboration Tau04 Workshop, Sep 14, 2004, Nara, Japan Outline:  Introduction 
EPS, July  Dalitz plot of D 0   -  +  0 (EPS-208)  Kinematic distributions in  c   e + (EPS-138)  Decay rate of B 0  K * (892) +  -
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
1 Rare Decays of B Hadrons at CDF Matthew Jones October 3, 2005.
Radiative B Decays (an Experimental Overview) E.H. Thorndike University of Rochester CLEO Collaboration FPCP May 18, 2002.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Direct CP and Rare B A B AR BEAUTY 05 - Assisi Jamie Boyd Bristol University On behalf of the B A B AR collaboration.
Sep/15/ Search for   e/ K.Hayasaka(Nagoya U.) Belle Collaboration.
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Pakhlov Pavel (ITEP, Moscow) Why B physics is still interesting Belle detector Measurement of sin2  Rare B decays Future plans University of Lausanne.
Measurements of Radiative Penguin B Decays at BaBar Jeffrey Berryhill University of California, Santa Barbara For the BaBar Collaboration 32 nd International.
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
New Particles at BELLE Beauty 2005 Assisi Spectroscopy and new Particles F. Mandl There is an impressive list of new particles in the charm sector discovered.
Search for LFV  decays involving     ’ at Belle Y. Enari, Belle collaboration Nagoya University.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Koji Ikado Beauty 2006 Rare B Decays : B  l, ll, ll  Nagoya University Koji Ikado The 11 th International Conference on B-Physics at Hadron Machines.
Measurement of R at CLEO - Jim Libby1 Measurement of R at CLEO Jim Libby University of Oxford.
Alex Smith – University of Minnesota Determination of |V cb | Using Moments of Inclusive B Decay Spectra BEACH04 Conference June 28-July 3, 2004 Chicago,
Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)
CP Asymmetry in B 0 ->π + π – at Belle Kay Kinoshita University of Cincinnati Belle Collaboration B 0 ->π + π – and CP asymmetry in CKMB 0 ->π + π – and.
1 BaBar Collaboration Randall Sobie Institute for Particle Physics University of Victoria.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
Constraints on  from Charmless Two- Body B Decays: Status and Perspectives James D. Olsen Princeton University Workshop on the CKM Unitarity Triangle.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Exclusive Semileptonic b  u Decays at CLEO Sheldon Stone Syracuse University.
Summary of Recent Results on Rare Decays of B Mesons from BaBar for the BaBar Collaboration Lake Louise Winter Institute Chateau Lake Louise February.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
Luca Lista L.Lista INFN Sezione di Napoli Rare and Hadronic B decays in B A B AR.
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
August 20, 2007 Charmless Hadronic B decays at BaBar1 Charmless Hadronic B Decays at BaBar Woochun Park University of South Carolina Representing the BaBar.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
1 CP violation in B → ,  Hiro Sagawa (KEK) FLAVOR PHYSICS & CP VIOLATION, Ecole Polytechnique, Paris, France on June 3-6, 2003.
Rare B Decays at Belle Hsuan-Cheng Huang ( 黃宣誠 ) National Taiwan University 2 nd BCP NTU, Taipei June 7 - 9, 2002.
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Search for CP Violation in B 0  h decays and B 0  h decays with B A B AR International Europhysics Conference on High Energy Physics, July 17 th -23.
Kalanand Mishra April 27, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
Branching Ratios and Angular Distribution of B  D*  Decays István Dankó Rensselaer Polytechnic Institute (CLEO Collaboration) July 17, 2003 EPS Int.
CP-Violating Asymmetries in Charmless B Decays: Towards a measurement of  James D. Olsen Princeton University International Conference on High Energy.
Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
B  K   p  and photon spectrum at Belle Heyoung Yang Seoul National University for Belle Collaboration ICHEP2004.
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
A. Drutskoy, University of Cincinnati B physics at  (5S) July 24 – 26, 2006, Moscow, Russia. on the Future of Heavy Flavor Physics ITEP Meeting B physics.
Semileptonic D Decays from CLEO and BELLE Yongsheng Gao Southern Methodist University (CLEO Collaboration) ICHEP04, Beijing, Aug. 16 ─ 23, 2004.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Radia Sia Syracuse Univ. 1 RICH 2004 Outline:  The CLEO-III RICH Detector  Physics Requirements  CLEO-III RICH at work… Performance of the CLEO-III.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University For the CDF Collaboration CIPANP, June 2012.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
RDE EPS 2003, Aachen B-Decays at CLEO: un-charmed hadronic — rare and not-so-rare R.D. Ehrlich, Cornell University (for the CLEO Collaboration)
Mats Selen, HEP Measuring Strong Phases, Charm Mixing, and DCSD at CLEO-c Mats Selen, University of Illinois HEP 2005, July 22, Lisboa, Portugal.
1 Rare B Decays At CDF Michael Weinberger (Texas A&M University ) For the CDF Collaboration DPF 2006 November 1, 2006.
Light particle searches at Belle
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Presentation transcript:

Sacha Kopp, Univ. Texas -- Austin 1 Search for CP in Rare B Decays Sacha E. Kopp, University of Texas – Austin for the CLEO Collaboration

Sacha Kopp, Univ. Texas -- Austin 2 Constraints on CKM Phase Fits to all data favor 44° <  < 75° Parodi, Roudeau, Stocci, hep-ph/ |V cd V cb | |V td V tb | * * |V ud V ub |* Constraints on  +i  from many results Newest contributions sin(2  ) (CDF),  m s > 14.5 ps -1 (LEP+CDF)   

Sacha Kopp, Univ. Texas -- Austin 3 Rare B Decays Tree decays b  u vs. b  c suppressed by |V ub | 2 /|V cb | 2 ~ 0.01 Additional |V us | 2 /|V ud | 2 ~ 0.04 for K  Expect tree dominantly b  uud. Decays b  s,d GIM-suppressed Loop diagram  (m t /m W ) 2. |V td | 2 /|V ts | 2 ~ 0.01 Expect penguins dominantly b  uus. u u s u u KK  u u s u  Tree: Penguin: d u  s u KK d u 

Sacha Kopp, Univ. Texas -- Austin 4 CP Asymmetries Measure B and B reactions described by two amplitudes:  (B  f) = | a 1 e i(  1 +  1 ) + a 2 e i(  2 +  2 ) | 2  (B  f) = | a 1 e i(  1 +  1 ) + a 2 e i(  2 +  2 ) | 2 CP asymmetry from strong and weak phase differences  sin(  1  2 )sin(  1  2 ) Depends upon comparable magnitudes as well CLEO can measure decays that are sensitive to  = arg(V ub *) B   K   , B   K   , B   K   ’

Sacha Kopp, Univ. Texas -- Austin 5 A CP Predictions Factorization model calculations (no FSI interactions) Ali, Kramer, Liu, hep-ph/ »K    » K    »K    0.01 » K   ’ »   Final state interactions may boost A CP ~ %. »He et al, Phys. Rev. Lett. 81, 5738 (1998) »Neubert, JHEP 9902, 014 (1999) »Deshpande et al., Phys. Rev. Lett. 82, 2240 (1999) New physics could boost A CP ~ %. »He et al., hep-ph/980982

Sacha Kopp, Univ. Texas -- Austin 6 R *  (1-R * )/  3/2  |  EW - cos  | Fleischer-Mannel (Phys. Rev. D57, 2752(1998))  (B   K    )  (B   K    ) Neubert-Rosner (Phys. Lett. B441, 403 (1998))  (B   K    ) 2  (B   K    )  from Decay Rates R   sin 2  CLEO: R = 1.01  0.26 Also model-dependent fit to many CLEO branching ratios of , K , ,  (Wuerthwein et al. hep-ex/ ): 84 <  < 154 (90% C.L.) 0.58  0.74  | (0.64  0.15) - cos  |

Sacha Kopp, Univ. Texas -- Austin 7 CESR Ring/CLEO Detector Total 14 fb  of e  e  collisions ~ 1/3 at  s = GeV to study continuum e  e   qq (q = u, d, s, c) ~ 2/3 at  (4S) resonance.  BB ~ 1 nb  9.7  10 6 BB pairs Symmetric collider  P B ~ 300 MeV/c CESR Phase II peak instantaneous luminosity: 8.3  cm -2 sec -1 Recorded 4.4 fb  in 1998 alone, stored 36 bunches/beam, 260 mA/beam Phase III underway now Mass (GeV/c 2 ) Rate (nb)  1998   1996   1997  Monthly Integrated Luminosity (pb -1 ) off on

Sacha Kopp, Univ. Texas -- Austin 8 B  K    /     Topology B  KB  K B  KB  K e + e -  qq P daughter ~ 2.55 – 2.85 GeV/c (higher than for b  c decays) Major background from e + e -  qq “continuum” Continuum events are “jetty” in topology P B ~ 300 MeV/c  BB events “spherical” Continuum suppression from ML fit to several kinematic and topological variables (more efficient). Continuum suppression factor of ~ 10 6, efficiency for K  /  of ~ 40%

Sacha Kopp, Univ. Texas -- Austin 9 K/  Separation (dE/dx - Expected)/  Pions Kaons  E  (GeV) KK   E resolution studied with D 0  K    (   ) mass resolutions EE EE dE/dx CLEO II25 MeV 1.7  CLEO II.V20 MeV 2.1  2.0  K  vs.  from dE/dx in drift chamber »Resol. confirmed with D *   D   , D   K    Also separation from kinematics:  E  = E  + E  - E beam CLEO data

Sacha Kopp, Univ. Texas -- Austin 10 Fit Results for B  h  h  K  K  yield is events  set to zero Restricted fit for …      K     First observation of a  mode! If remove 3  events with highest likelihood, still 3.4  significance. N(K    ) N(     )

Sacha Kopp, Univ. Texas -- Austin 11 B  K    and B     Cuts applied on  E and topological variables to make these plots. Results in ~ factor 2 loss in efficiency Can perform similar procedure to look at other distributions (  E, Fisher, etc). B Mass (GeV/c 2 )

Sacha Kopp, Univ. Texas -- Austin 12 Signal (events) #  (%) BR (  )   0.5 < KKKKKKKK    KKKKKKKK < 1.9 < 5.1 B  K , B   Summary

Sacha Kopp, Univ. Texas -- Austin 13 B , B   Signal (events) #  (%) BR (  )    3.3  B Mass (GeV/c 2 )     K   1.4 < Greater challenges from feed-across (  ) Results soon on  0  0 and  0  +. Inconsistent with non-resonant B  hhh

Sacha Kopp, Univ. Texas -- Austin 14 Look for  ’        decays Look for ,       decays B      ’K’K B Mass (GeV/c 2 ) ’K’K Fit for  ( ’ ) K and  ( ’ )  simultaneously Efficiencies ~ 2 - 9% for these modes  

Sacha Kopp, Univ. Texas -- Austin 15 Signal (events) #  BR (  ) Prediction* K’K’KKK’K’KK   9 <6.9 < K   K   K   ’ K   ’   1.6 <35 < B      Summary * Ali, Kramer, Liu, hep-ph/

Sacha Kopp, Univ. Texas -- Austin 16 CP Asymmetry Systematics B flavor tagged by high momentum track Must demonstrate reconstruction not charge dependent. Charge difference in K - N and K + N cross sections Track reconstruction difference confirmed in Monte Carlo ~ 0.002

Sacha Kopp, Univ. Texas -- Austin 17 CP Systematics (cont’d) Likelihood fits heavily dependent on tracking resolutions See no CP asymmetry in reconstructed D 0 mass -- even in tails of resolution.

Sacha Kopp, Univ. Texas -- Austin 18 dE/dx Uncertainty dE/dx used in likelihood fit Charge asymmetry checked with D 0  K   + (  0 ) decays No asymmetry observed -- even in tails of resolution Assign systematic error  0.01 (dE/dx – Expected)/ 

Sacha Kopp, Univ. Texas -- Austin 19 CP Asymmetry Results events events events events events K+K+ K0K0 K+K+ KK  + A CP % C.L.

Sacha Kopp, Univ. Texas -- Austin 20 CP from New Physics? Penguin amplitude  |V ts | Other amplitudes, CP, small in SM Some Higgs models introduce CP, possibly even if b  s  rate unaffected. »Wolfenstein & Wu, Phys. Rev. Lett. 73, 2809 (1998) »Asatrian & Ioannissian, Phys. Rev. D54, 5642 »Kagan & Neubert, Phys. Rev. D58, B Candidate Mass (GeV/c 2 ) 126  15 events

Sacha Kopp, Univ. Texas -- Austin 21 b  s  Results Upper limit on b  d exclusive penguins: BR(B  (  )  ) < Updated branching ratio results: BR(B 0  K *0  ) = (4.5  0.7  0.3)  BR(B +  K *+  ) = (3.8  0.9  0.3)  CP asymmetry from special kinematic region for best K/  identification CLEO result: A CP = 0.08  0.13 Asymmetry for inclusive b  s  (based on 3.3M BB pairs only): < A CP < 0.42 (90% C.L.) Monte Carlo

Sacha Kopp, Univ. Texas -- Austin 22 Search for b  d  Expect that B  also described by penguin amplitude  dominant top?  (B  ) |V td | 2  (B  K *  ) |V ts | 2 Updated branching ratio limits: BR(B 0  0  ) < 1.7  BR(B +  +  ) < 1.3  BR(B 0  ) < 1.0  Expect  /K*  ~ 1/50 and they look alike! = =   K*K*

Sacha Kopp, Univ. Texas -- Austin 23 Current  /K separation statistical -- we want event-by event Lower fake rates for rare modes (  ) Goal: 4   /K at p = 2.8 GeV/c with dE/dx (3.2  from RICH) Several photons per track in radiator material  trk =   /  n  Design goals of   = 14 mrad n  = 12 CLEO III RICH Detector  C = 12.8 mrad in LiF  need  trk = 4 mrad

Sacha Kopp, Univ. Texas -- Austin 24 CLEO III RICH Proximity focussing with solid radiators. LiF radiators N 2 expansion gap CH 2 /TEA photosensitive medium in MWPC Pad read-out

Sacha Kopp, Univ. Texas -- Austin 25 First Colliding Beam Data Engineering run Recorded ~ 80 pb -1 of data Peak lum. ~ 5  cm -2 s -1 Nov.16, 1999 Bhabha event

Sacha Kopp, Univ. Texas -- Austin 26 After background subtraction: »10.2  flat radiators (stat. error only) »13.2  sawtooth radiators Expect 10-20% more photons with higher gain CLEO RICH Performance Planar Sawtooth Gain ~ 2  10 4

Sacha Kopp, Univ. Texas -- Austin 27 Conclusions b  s penguins appear dominant » K  »  ( ’ ) K (*) Definitive observations of hadronic b  u decays »  »  »  First CP asymmetries consistent with zero »Based on ~ 9.7 fb-1 of data »Will be statistics limited for some time to come First exciting data from CLEOIII »RICH, Drift Chamber working very well. »Silicon installed in February. »Physics running begins April 3rd.

Sacha Kopp, Univ. Texas -- Austin 28 B      B   D      D   D   D   K      KK     A Fully- Reconstructed event Sacha Kopp, Univ. Texas -- Austin

29 Continuum Suppression (cont’d) B Mass (GeV/c 2 ) cos(  T ) »Fisher variable which utilizes  R 2 = H 2 / H 0 Fox-Wolfram moment  cos  B – angle between thrust axis and beam  Energy flow around thrust axis – 9 cones »“Beam-constrained” mass of B: M B =  E beam - |p B | 2 »Resonance masses (for , , K* modes) 2 Maximum Likelihood fit utilizes 6 different variables: »cos  T -- angle between thrust axis of B and rest of the event |cos  T | < 0.8 removes 83% of continuum backgrounds Off  (4S) data BB Monte Carlo

Sacha Kopp, Univ. Texas -- Austin 30