Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.

Slides:



Advertisements
Similar presentations
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Tuning order in the.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Competing orders and quantum criticality
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents (UCSB) Eugene Demler (Harvard) Matthew Fisher (UCSB) Kwon Park (Maryland) Anatoli Polkovnikov (Harvard) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland)

Parent compound of the high temperature superconductors: Cu O La Band theory k Half-filled band of Cu 3d orbitals – ground state is predicted by band theory to be a metal. However, La 2 CuO 4 is a very good insulator

A Mott insulator Parent compound of the high temperature superconductors: Ground state has long-range spin density wave (Néel) order at wavevector K= (  )

A Mott insulator Parent compound of the high temperature superconductors: Ground state has long-range spin density wave (Néel) order at wavevector K= (  )

A Mott insulator Parent compound of the high temperature superconductors: Ground state has long-range spin density wave (Néel) order at wavevector K= (  )

Introduce mobile carriers of density  by substitutional doping of out-of-plane ions e.g. First study magnetic transition in Mott insulators………….

Outline A.Magnetic quantum phase transitions in “dimerized” Mott insulators Landau-Ginzburg-Wilson (LGW) theory B.Mott insulators with spin S=1/2 per unit cell Berry phases, bond order, and the breakdown of the LGW paradigm C.Cuprate Superconductors Competing orders and recent experiments

Magnetic quantum phase tranitions in “dimerized” Mott insulators: Landau-Ginzburg-Wilson (LGW) theory: Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry

TlCuCl 3 M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/

S=1/2 spins on coupled dimers Coupled Dimer Antiferromagnet M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, (1989). N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002).

Weakly coupled dimers

Paramagnetic ground state

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon

Weakly coupled dimers Excitation: S=1 triplon Energy dispersion away from antiferromagnetic wavevector (exciton, spin collective mode)

TlCuCl 3 N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B (2001). “triplon” K. Damle and S. Sachdev, Phys. Rev. B 57, 8307 (1998) This result is in good agreement with observations in CsNiCl 3 (M. Kenzelmann, R. A. Cowley, W. J. L. Buyers, R. Coldea, M. Enderle, and D. F. McMorrow Phys. Rev. B 66, (2002)) and Y 2 NiBaO 5 (G. Xu, C. Broholm, G. Aeppli, J. F. DiTusa, T.Ito, K. Oka, and H. Takagi, preprint).

Coupled Dimer Antiferromagnet

close to 1 Weakly dimerized square lattice

close to 1 Weakly dimerized square lattice Excitations: 2 spin waves (magnons) Ground state has long-range spin density wave (Néel) order at wavevector K= (  )

TlCuCl 3 J. Phys. Soc. Jpn 72, 1026 (2003)

1 Néel state T=0 Pressure in TlCuCl 3 Quantum paramagnet c = (3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002) The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) provides a quantitative description of spin excitations in TlCuCl 3 across the quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, Phys. Rev. Lett. 89, (2002))

1 T=0  in  cuprates  Quantum paramagnet c = (3) M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002) Magnetic order as in La 2 CuO 4 Electrons in charge-localized Cooper pairs The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) provides a quantitative description of spin excitations in TlCuCl 3 across the quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, Phys. Rev. Lett. 89, (2002)) Néel state

LGW theory for quantum criticality ~3  Three triplon continuum Triplon pole Structure holds to all orders in u A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

Mott insulators with spin S=1/2 per unit cell: Berry phases, bond order, and the breakdown of the LGW paradigm

Mott insulator with two S=1/2 spins per unit cell

Mott insulator with one S=1/2 spin per unit cell

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling g.

Mott insulator with one S=1/2 spin per unit cell Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling g.

Mott insulator with one S=1/2 spin per unit cell

Resonating valence bonds Resonance in benzene leads to a symmetric configuration of valence bonds (F. Kekulé, L. Pauling) P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974); P.W. Anderson 1987 Such states are associated with non-collinear spin correlations, Z 2 gauge theory, and topological order. N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991).

Excitations of the paramagnet with non-zero spin

S=1/2 spinons,, are confined into a S=1 triplon,

Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon,

Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon,

Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon,

Excitations of the paramagnet with non-zero spin S=1/2 spinons,, are confined into a S=1 triplon, S=1/2 spinons can propagate independently across the lattice

Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases

Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases

Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Change in choice of is like a “gauge transformation”

Quantum theory for destruction of Neel order Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002) Change in choice of is like a “gauge transformation” The area of the triangle is uncertain modulo 4  and the action has to be invariant under

Quantum theory for destruction of Neel order Ingredient missing from LGW theory: Spin Berry Phases Sum of Berry phases of all spins on the square lattice.

Partition function on cubic lattice Modulus of weights in partition function: those of a classical ferromagnet at a “temperature” g Quantum theory for destruction of Neel order S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Simplest large g effective action for the A a  N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

Ordering by quantum fluctuations

g 0 ? or

Naïve approach: add bond order parameter to LGW theory “by hand” g First order transition g g

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, (2002) Bond order in a frustrated S=1/2 XY magnet g= First large scale (> 8000 spins) numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry

g 0 ? or

S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990); G. Murthy and S. Sachdev, Nuclear Physics B 344, 557 (1990); C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, (2001); S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002); O. Motrunich and A. Vishwanath, cond-mat/ Theory of a second-order quantum phase transition between Neel and bond-ordered phases Second-order critical point described by emergent fractionalized degrees of freedom (A  and z  ); Order parameters (  and  bond  ) are “composites” and of secondary importance Second-order critical point described by emergent fractionalized degrees of freedom (A  and z  ); Order parameters (  and  bond  ) are “composites” and of secondary importance T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

g Phase diagram of S=1/2 square lattice antiferromagnet T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004). S. Sachdev cond-mat/ or

Mott insulators with spin S=1/2 per unit cell: Berry phases, bond order, and the breakdown of the LGW paradigm Order parameters/broken symmetry + Emergent gauge excitations, fractionalization.

Cuprate superconductors: Competing orders and recent experiments

Magnetic Mott Insulator Magnetic Superconductor Paramagnetic Mott Insulator Superconductor Quantum phase transitions High temperature superconductor

Magnetic Mott Insulator Magnetic Superconductor Paramagnetic Mott Insulator Superconductor Quantum phase transitions Spirals……Shraiman, Siggia Stripes……..Zaanen, Kivelson….. High temperature superconductor

Magnetic Mott Insulator Paramagnetic Mott Insulator Quantum phase transitions

Magnetic Mott Insulator Paramagnetic Mott Insulator Quantum phase transitions g La 2 CuO 4 or

g La 2 CuO 4 or  Hole density Large N limit of a theory with Sp(2N) symmetry: yields existence of bond order and d-wave superconductivity S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991); M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, (2002). Localized holes

Magnetic, bond and super-conducting order g La 2 CuO 4 or  Hole density Large N limit of a theory with Sp(2N) symmetry: yields existence of bond order and d-wave superconductivity S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991); M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, (2002). Localized holes

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide) x y

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide) x y A. T. Boothroyd, D. Prabhakaran, P. G. Freeman, S.J.S. Lister, M. Enderle, A. Hiess, and J. Kulda, Phys. Rev. B 67, (2003). La 5/3 Sr 1/3 NiO 4

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide) x y A. T. Boothroyd, D. Prabhakaran, P. G. Freeman, S.J.S. Lister, M. Enderle, A. Hiess, and J. Kulda, Phys. Rev. B 67, (2003). La 5/3 Sr 1/3 NiO 4 Spin waves: J=15 meV, J’=7.5meV

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ x y A. T. Boothroyd, D. Prabhakaran, P. G. Freeman, S.J.S. Lister, M. Enderle, A. Hiess, and J. Kulda, Phys. Rev. B 67, (2003). La 5/3 Sr 1/3 NiO 4 Spin waves: J=15 meV, J’=7.5meV Neutron scattering measurements of La 15/8 Ba 1/8 CuO 4 (Zurich oxide)

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Observations in La 15/8 Ba 1/8 CuO 4 are very different and do not obey spin-wave model. Similar spectra are seen in most hole-doped cuprates. x y “Resonance peak”

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Red lines: triplon excitation of a 2 leg ladder with exchange J=100 meV

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Red lines: triplon excitation of a 2 leg ladder with exchange J=100 meV

J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, cond-mat/ Red lines: triplon excitation of a 2 leg ladder with exchange J=100 meV

J. M. Tranquada et al., cond-mat/ x y Spectrum of a two-leg ladder

Proposals of M. Vojta and T. Ulbricht, cond-mat/ G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/ M. Vojta and S. Sachdev, to appear. Magnetic excitations display a crossover from spin-waves (at low energies) to triplons (at high energies), and main features can be described by proximity to a magnetic quantum phase transition in the presence of period 4, static, bond order.

Possible simple microscopic model of bond order G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/ Spin wavesTriplons“Resonance peak”

G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/

J. M. Tranquada et al., cond-mat/ x y Bond operator (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) theory of coupled-ladder model, M. Vojta and T. Ulbricht, cond-mat/

J. M. Tranquada et al., cond-mat/ x y Numerical study of coupled ladder model, G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/

J. M. Tranquada et al., cond-mat/ x y LGW theory of magnetic criticality in the presence of static bond order, M. Vojta and S. Sachdev, to appear.

Conclusions I.Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators: A. Dimerized Mott insulators: Landau-Ginzburg- Wilson theory of fluctuating magnetic order parameter. B. S=1/2 square lattice: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary. Conclusions I.Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators: A. Dimerized Mott insulators: Landau-Ginzburg- Wilson theory of fluctuating magnetic order parameter. B. S=1/2 square lattice: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary.

Conclusions II.Competing spin-density-wave/bond/superconducting orders in the hole-doped cuprates. Main features of spectrum of excitations in LBCO modeled by LGW theory of quantum critical fluctuations in the presence of static bond order across a wide energy range. Predicted magnetic field dependence of spin-density-wave order observed by neutron scattering in LSCO. E. Demler, S. Sachdev, and Y. Zhang, Phys.Rev. Lett. 87, (2001); B. Lake et al. Nature, 415, 299 (2002); B. Khaykhovich et al. Phys. Rev. B 66, (2002). Predicted pinned bond order in vortex halo consistent with STM observations in BSCCO. K. Park and S. Sachdev Phys. Rev. B 64, (2001); Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, (2002); J.E. Hoffman et al. Science 295, 466 (2002). Energy dependence of LDOS modulations in BSCCO best modeled by modulations in bond variables. M. Vojta, Phys. Rev. B 66, (2002); D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, Phys. Rev. B 67, (2003); C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, Phys. Rev. B 67, (2003). Conclusions II.Competing spin-density-wave/bond/superconducting orders in the hole-doped cuprates. Main features of spectrum of excitations in LBCO modeled by LGW theory of quantum critical fluctuations in the presence of static bond order across a wide energy range. Predicted magnetic field dependence of spin-density-wave order observed by neutron scattering in LSCO. E. Demler, S. Sachdev, and Y. Zhang, Phys.Rev. Lett. 87, (2001); B. Lake et al. Nature, 415, 299 (2002); B. Khaykhovich et al. Phys. Rev. B 66, (2002). Predicted pinned bond order in vortex halo consistent with STM observations in BSCCO. K. Park and S. Sachdev Phys. Rev. B 64, (2001); Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, (2002); J.E. Hoffman et al. Science 295, 466 (2002). Energy dependence of LDOS modulations in BSCCO best modeled by modulations in bond variables. M. Vojta, Phys. Rev. B 66, (2002); D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, Phys. Rev. B 67, (2003); C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, Phys. Rev. B 67, (2003).

Conclusions III. Breakdown of LGW theory of quantum phase transitions with magnetic/bond/superconducting orders in doped Mott insulators ? Conclusions III. Breakdown of LGW theory of quantum phase transitions with magnetic/bond/superconducting orders in doped Mott insulators ?