Example: CO3 , carbonate ion

Slides:



Advertisements
Similar presentations
Copyright McGraw-Hill Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories.
Advertisements

8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule
Chemical Bonding and VSEPR L. Scheffler IB Chemistry 1-2 Lincoln High School 1.
Molecular Geometry Lewis structures show the number and type of bonds between atoms in a molecule. –All atoms are drawn in the same plane (the paper).
Drawing Lewis structures
Molecular shapes Balls and sticks. Learning objectives  Apply VSEPR to predict electronic geometry and shapes of simple molecules.
Chapter 9 Molecular Geometry and Bonding Theories.
Lecture 10: Covalent Bonding Pt 2: VSEPR Theory (Ch 8) Suggested HW: (Ch 8) 19, 23(a, c and d only), 28, 29, 34 * Bond angles are not required. Label the.
Unit 04: BONDING IB Topics 4 & 14 Text: Ch 8 (all except sections 4,5 & 8) Ch 9.1 & 9.5 Ch My Name is Bond. Chemical Bond.
The Relation of Bond Order, Bond Length and Bond Energy Bond Bond Order Average Bond Average Bond Length (pm) Energy (kJ/mol) C O C O
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Simple Bonding Theory Review of Lewis Structures and VSEPR Theory.
Lewis Structures & VSEPR. Lewis Structure Lewis Structures – shows how the _______________ are arranged among the atoms of a molecule There are rules.
(1) Covalent bonding: sharing of electron pairs by atoms
VESPR Theory. Formal charge Molecules or polyatomic ions containing atoms that can exceed the octet rule often have resonance structures, all of which.
Molecular Structure and Covalent Bonding Theories
Carvone Bucky ball Molecular Geometry Chapter 8 Part 2.
Theories of Bonding and Structure
Chapter 10 Chemical Bonding II. Lewis Structure  Molecular Structure Structure determines chemical properties.
I Chemical Bonding. Chemical Bond  attractive force between atoms or ions that binds them together as a unit  bonds form in order to…  decrease potential.
2008, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA.
Shapes of molecules & ions. VSEPR theory VSEPR - the Valence Shell Electron Pair Repulsion theory is used to obtain the shape of simple molecules and.
MOLECULAR GEOMETRY AND CHEMICAL BONDING THEORY
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required.
Chapter 8 Molecular Structure, Valence Bond Theory, and Hybridization.
The Structure and Bonding of IO3- An example of the use of Lewis Structures and VSEPR Theory Lecturer: Dr. Andreas Lemmerer.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required.
Section 12.1 Characteristics of Chemical Bonds 1.To learn about ionic and covalent bonds and explain how they are formed 2.To learn about the polar covalent.
CMH 121 Luca Preziati Chapter 3: Chemical Bonds Molecule = A group of at least two atoms, linked together by chemical bonds DEF Chemical Bond = An interaction.
IIIIII Molecular Geometry Molecular Structure. A. VSEPR Theory  Valence Shell Electron Pair Repulsion Theory  Electron pairs orient themselves so that.
IIIIII I. Lewis Diagrams Molecular Structure. A. Octet Rule n Remember…  Most atoms form bonds in order to have 8 valence electrons.
Molecule = A group of at least two atoms, linked together by chemical bonds Chemical Bond = An interaction between atoms or molecules caused by the electromagnetic.
Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. Valence shell electron pair.
IIIIII I. Lewis Diagrams (p ) Ch. 6 – Molecular Structure.
Molecular Structure Molecular geometry is the general shape of a molecule or the arrangement of atoms in three dimensional space. Physical and chemical.
Molecular Shapes If you were to draw the Lewis structure for Carbon tetrachloride based on what you have already taken in this class, you may come up with.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Chemical Bonding I. Bonding Chemical bonds are forces that cause a group of atoms to behave as a unit. Bonds result from the tendency of a system to seek.
Molecular Geometries and Bonding Theories
Chapter 7 Bonding. What is a Bond? l A force that holds atoms together. l We will look at it in terms of energy. l Bond energy is the energy required.
Chapter 9 Molecular Geometries and Bonding Theories
Ch-8 Part II Bonding: General Concepts. Molecular Geometry and Bond Theory In this chapter we will discuss the geometries of molecules in terms of their.
Chapter 9 Molecular Geometries and Bonding Theories
Chapter 9 Bonding II: Molecular Geometry and Bonding Theories
Shapes.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Molecular Geometry Cocaine
Molecular Geometry and Bonding Theories.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Covalent Bonding Pt 2: VSEPR Theory
Chapter 10 Chemical Bonding II
Lewis structures Page 52 in notebook
Molecular Geometry.
Chapter 10 Chemical Bonding II
Chapter 10 Chemical Bonding II
Molecular Geometry bond length, angle determined experimentally
Valence shell electron pair repulsion (VSEPR) model:
Ch. 6 – Molecular Structure
My Name is Bond. Chemical Bond
GEOMETRY AND POLARITY OF MOLECULES
All shapes came from Shapes of Molecules All shapes came from
Molecular Geometry bond length, angle determined experimentally
Molecular Geometry.
VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to.
Chapter 10 Chemical Bonding II
Covalent Bonding.
Molecular Geometry bond length, angle determined experimentally
Molecular Geometry bond length, angle determined experimentally
Bonding Chapters 8 & 9.
Presentation transcript:

Example: CO3 , carbonate ion RESONANCE STRUCTURES For certain molecules or molecular ions, two or more EQUIVALENT Lewis structures can be drawn. The equivalent structures have the same formal charge and are equal in energy. 2- Example: CO3 , carbonate ion C O 1 2 3 -2

These equivalent structures are called RESONANCE STRUCTURES. Three equivalent structures for the carbonate ion – all have the same formal charge. C O 1 2 3 -1 These equivalent structures are called RESONANCE STRUCTURES. The double bond electron pair is DELOCALIZED over all three C-O bonds and hence all three C-O bonds are between pure-single and pure-double bonds. Note: This differs from the two structures for N3- which had different bonding arrangements for the atoms, and hence not equivalent.

The carbonate ion is NOT a mixture of the three structures, nor does any one of the three exist independently. The real structure is an average of the three structures, and properties of these bonds are such that they are intermediate between single and double bonds. All three C-O bonds identical, the bond lengths are between a single bond between C and O and a double bond between C and O Other examples of molecules that have more than one equivalent resonance structures are NO3-, SO3

EXCEPTIONS TO THE OCTET RULE Although the octet rule is very useful, it does not apply in all cases. There are three classes of exceptions 1) Compounds with odd number of electrons 2) Compounds with a shortage of electrons, less than the octet. 3) Compounds with an abundance of electrons, exceeding the octet

1) Molecules with ODD number of valence electrons An example is nitrogen monoxide, NO. Molecules with an odd number of electrons cannot satisfy the octet rule for all its atoms. In this case the octet rule must be given up for one of the atoms by leaving an unpaired lone electron. ALL BONDING ELECTRONS MUST BE PAIRED.

NO is stable molecule with 11 valence electrons N=O N=O (i) (ii) Two Lewis structures can be drawn for NO In (i) N has an octet, but not O; in (ii) O has an octet but not N Calculate the formal charge of each atom for (i) and (ii) to determine which is the more favored structure. N=O N=O (i) (ii) -1 +1 Structure (ii) is favored since the formal charges on both atoms is zero; in (i) N is -1 and O is +1, with the more electronegative atom, O, possessing a +1 formal charge

2) Electron Deficient Molecules Example BF3 Lewis model predicts the following structure for BF3 B F +1 -1 However, experimental evidence suggests that the structure of BF3 is: B F

B F +1 -1 (i) (ii) (i) assigns a +1 formal charge to a very electronegative atom which is undesirable (ii) is the observed structure, even though B does not have an octet, the formal charges on all atoms are zero.

3) Valence-Shell Expansion The elements in Groups IIIA to VII A in the third period and beyond show a tendency to surround themselves with more than 8 electrons. It is possible for these elements through “valence shell expansion” for the central atom to have more than 8 electrons In cases like this, after accounting for bonding electrons, assign lone pairs to the outer atoms to give them octets. If any electrons still remain, assign them to the central atoms as lone pairs.

Example: SF6 Number of valence electrons = 6 + (6x7) = 48 Total number of electrons needed for each atom to satisfy an octet = 7x8 = 56 Number of shared electrons = 56-48 = 8 8 electrons, 4 bonds, is not enough bonds for SF6 Hence, assign one bond pair to each bond, which for SF6 is 6. Then assign lone pairs to the outer atoms to give them an octet. If any electrons remain, assign them to the central atom. S F

Count all electrons (6x6) + (6x2) = 48 electrons F Count all electrons (6x6) + (6x2) = 48 electrons Formal charge on all atoms: 0

POCl3 - phosphoryl chloride -1 +1 P Cl O (ii) (i) i) non zero formal charges ii) valence shell expansion for P

Shapes of Molecules Molecules have definite shape i.e. definite geometries. For example, H2O is bent and CO2 is linear. O H 104.5 o C = 180o

Lewis stuctures do not provide information on a molecule’s geometry, i Lewis stuctures do not provide information on a molecule’s geometry, i.e. shape. VALENCE SHELL ELECTRON-PAIR REPULSION (VSEPR) THEORY: predicts molecular shapes based on Lewis stuctures VSEPR derives from the realization that bonding and non-bonding electron pairs will locate themselves in space so as to minimize repulsive interactions. The geometry of the electron pairs, and the covalent bonds that form, can be predicted using VSEPR

Molecular geometry depends on the total number of electron pairs To use the VSEPR theory to predict molecular geometry, need to know how electron pairs can be arranged around a central atom so as to minimize electron-electron repulsion. An electron pairs arranges itself in three-dimensional space such that it is equally far apart from all the other electron pairs. The resulting arrangement of the electron pairs in a molecule depends on the NUMBER of electron pairs. Note: For VSEPR, the electron pairs we refer to are the valence electrons

For a central atom surrounded by TWO electron pairs, the optimum geometry which minimizes repulsion between the electrons pairs is LINEAR 180o LINEAR For a central atom surrounded by THREE electron pairs, the optimum geometry which minimizes repulsion between the electrons pairs is TRIGONAL PLANAR 120o TRIGONAL PLANAR

For a central atom surrounded by FOUR electron pairs, the optimum geometry which minimizes repulsion between the electrons pairs is TETRAHEDRAL 109.47o TETRAHEDRAL For a central atom surrounded by FIVE electron pairs, the optimum geometry which minimizes repulsion between the electrons pairs TRIGONAL BIPYRAMIDAL TRIGONAL BIPYRAMIDAL 90o 120o

For a central atom surrounded by SIX electron pairs, the optimum geometry which minimizes repulsion between the electrons pairs OCTAHEDRAL 90o OCTAHEDRAL We have been talking about the location of the electron pairs about the central atom. This maybe different from molecular geometries i.e. the structure or shape of a molecule

If O is bonded to 2 H atoms, why is the structure of water not linear? Water has a “BENT” structure with the H-O-H angle measured to be 104.5o. O H 104.5 o If O is bonded to 2 H atoms, why is the structure of water not linear?

MOLECULAR GEOMETRY Molecular geometry is the arrangement of ATOMS about the central atom. If there are no non-bonding electrons, then the electron geometry and the molecular geometry is the same. If there are non-bonding electrons on the central atom then the molecular geometry differs from the electron geometry but is obtained from knowledge of the electron geometry about the central atom.

To determine the molecular geometry about the central atom of a molecule: 1) Write the best Lewis structure for the molecule or ion 2) Count the total number of ATOMS attached to the central atom plus the number of NONBONDING ELECTRON PAIRS on the central atom . 3) Using the VSEPR geometries establish the ELECTRON geometry about the central atom. 4) Finally examine the placement of atoms and identify the molecular geometry.

Step 1: Write the best Lewis structure for the molecule Total number of valence electrons = 1+1+6 = 8 Number of electrons needed for each to complete an octet (remember for H need two electrons) = 2 + 2 + 8 = 12 Shared electrons = 12- 8=4 => two bonds Number of unpaired electrons = 4 => 2 lone pairs on O Lewis structure of H2O is: H O

2) Count the total number of atoms attached to the central atom plus the number of non-bonding electron pairs on the central atom H O For water, Total number of electron pairs = 2 pairs of bonding electrons (bp) + 2 pairs of non-bonding electrons (np) = 4 pairs

3) Then using the VSEPR geometries establish the electron geometry about the central atom. According to VSEPR theory: For a central atom surrounded by four electron pairs, the optimum geometry which minimizes repulsion between the electrons pairs is tetrahedral Arrange the two nonbonding electron pairs and the two H atoms at the apices of the tetrahedron, with O at the center O H

4) Finally examine the placement of atoms and identify the molecular geometry. To determine the molecular geometry of water, look at the arrangement of just the atoms (in this case, H,O,H) O H Looking at the arrangement of the atoms in H2O, we see that the molecule is bent.

For a tetrahedral geometry, expect that the H-O-H angle is 109.5o The measured H-O-H angle is 104.5o, slightly smaller than predicted. Non-bonding electron pairs are more diffuse than bonding electron pairs, taking up more space. Model

Draw the Lewis structure to determine the number of bonding electron pairs and number of nonbonding pairs on the central atom (a double or triple bond counts as a single electron pair when using VSEPR theory). Arrange the bonding and nonbonding electron pairs around the central atom in a geometry predicted by VSEPR. Position the atoms bonded to the central atom where the bonding electrons are positioned. Determine the molecular geometry based on the arrangement of the atoms

Two electron pairs Example: CO2 Lewis structure: O=C=O Number of electron pairs around C = 2 (count the double bond as a single electron pair). Both are bonding pairs VSEPR predicts a linear molecular geometry for CO2 Model

Three electron pairs B F BF3 – Lewis structure BF3 – Lewis structure The three electron pairs around the central B atom are all bonding pairs. According to VSEPR the three electron pairs around the central atom are positioned at the vertices of an equilateral triangle In the case of BF3, since the three electron pairs are bonding pairs, the three F atoms are positioned at the vertices of the equilateral triangle. Model

F B trigonal planar NO2- Lewis structure: O=N-O For VSEPR count two bonding electron pairs and one nonbonding electron pair. Hence the three electron pairs are situated at the vertices of an equilateral triangle.

The molecular geometry if NO2- is not trigonal planar, but bent. The two O atoms are situated at two of the vertices and the nonbonding electron pair at the third. The molecular geometry if NO2- is not trigonal planar, but bent. The O-N-O angle is less than 120o due to the presence of the nonbonding pair on N N O >120o bent -1 <120o

methane, CH4 tetrahedral water, H2O bent ammonia, NH3 pyramidal Four electron pairs For molecules with four electron pairs, the electron pairs surround the central atom in a TETRAHEDRAL geometry. The molecular geometry depends on the number of bonding and nonbonding electron pairs on the central atom. Examples: C H methane, CH4 tetrahedral O water, H2O bent N ammonia, NH3 pyramidal Model

Electronic geometry is trigonal bipyramidal. Five Electron Pairs Electronic geometry is trigonal bipyramidal. However, unlike the 2, 3 and 4 electron geometries all vertices of a trigonal bipyramid are NOT equivalent. There are two AXIAL positions and three EQUATORIAL positions. 90o 120o axial equatorial

axial-central atom-axial = 180o axial-central atom-equatorial = 90o Angle between axial-central atom-axial = 180o axial-central atom-equatorial = 90o equatorial -central atom- equatorial = 120o The positions of the nonbonding electron pairs relative to each other and the bonding pairs have to account for the non-equivalence of the axial and equatorial positions. To position the nonbonding and bonding electrons: nb-nb repulsion > nb-b > b-b

Hence, position nonbonding pairs first, then bonding pairs accounting for the repulsion between the electron pairs. PCl5 P Cl Cl P trigonal bipyramidal Model

SF4 S F Position the nonbonding electron pair on S at the equatorial position since this minimizes nb-b repulsions F F S F “see-saw” F

Angles in SF4 are different from the predicted 180o, 120o and 90o due to the non-bonding electron pair F S 187o 87o 102o Other examples ClF3 - distorted T XeF2 - linear Model

Six electron pairs Octahedral geometry All vertices are the equivalent, hence bonding and nonbonding electron pairs can be positioned at any vertex OCTAHEDRAL Molecular geometry determined by number and position at atoms and nonbonding electron pairs Model

Examples S F SF6 octahedral Br F BrF5 square pyramidal Xe F XeF4 square planar

Molecular Properties Bond Lengths The bond distance is the distance between the two nuclei of the two atoms bonded together. Bond lengths depend on the elements and whether the bond between the two elements is single, double or triple Typically: single bond length > double bond length > triple bond length

Bond Energies If two atoms in a diatomic molecule are pulled far enough apart the bond between the atoms breaks. The energy needed to break the bond is called the bond energy or bond dissociation energy. Bond energies depend on the nature of the atoms bonded together and whether the bond is single, double or triple. Typically single bond energies < double bond energy < triple bond energy

Dipole Moments The bonding electron pair in HCl is not shared equally between the H and Cl atoms. This is because Cl is more electronegative than H, and tends to attract the electron pair closer towards it. Hence the electron distribution for the bonding pair of electrons is not evenly distributed over both the H and Cl atoms, but is more concentrated over the Cl atom. The more electronegative atom develops a slight negative charge and the more electropositive atom a slight positive charge

This charge separation results in a DIPOLE MOMENT, and a POLAR HCl bond. The dipole moment is defined as the product of the magnitude of the separated charges and the distance between the centers of the charges. The dipole moment is a vector H Cl

The larger the electronegative difference between the bonded atoms, larger is the magnitude of the dipole moment and hence more polar is the bond. All heteronuclear diatomic molecules (A-B. where A≠B) are polar molecules with the degree of polarity depending on the electronegativity differences between the two atoms. Heteronuclear diatomics have non-zero dipole moments All homonuclear diatomic molecules (A2) are non-polar, with zero dipole moments

Polyatomic molecules Bonds between atoms of different elements will each have a dipole moment associated with them. The magnitude of the dipole moment of a bond depends on the electronegativity differences between the bonded atoms. However, whether the molecule as a whole has a dipole moment depends on the geometry of the molecule. The dipole moment is a vector and hence the dipole moment of the molecule is the vector sum of the dipole moments of each bond in the molecule.

Methane, CH4 C H The net dipole moment for CH4 is zero

Water, H2O O H O H Model