THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.

Slides:



Advertisements
Similar presentations
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Advertisements

Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Towards a first Principles Electronic Structure Method Based on Dynamical Mean Field Theory Gabriel Kotliar Physics Department and Center for Materials.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) Collaborators : G. Biroli M. Capone M Civelli.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Dynamical Mean Field Theory from Model Hamiltonian Studies of the Mott Transition to Electronic Structure Calculations Gabriel Kotliar Physics Department.
Elemental Plutonium: Electrons at the Edge The Mott transition across the actinide series. Gabriel Kotliar Physics Department and Center for Materials.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Excitation spectra.
Dynamical Mean Field Approach to Strongly Correlated Electrons Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Field.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights into real materials : DMFT at work. From theoretical solid state physics to materials science.
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
DMFT approach to many body effects in electronic structure. Application to the Mott transition across the actinide series [5f’s]. G.Kotliar Phyiscs Department.
Dynamical Mean Field Theory (DMFT) Approach to Strongly Correlated Materials G. Kotliar Physics Department and Center for Materials Theory Rutgers SCES04.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Northwestern.
Correlation Effects in Itinerant Magnets : Towards a realistic Dynamical Mean Field Approach Gabriel Kotliar Physics Department Rutgers University In Electronic.
Electronic Structure Near the Mott transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline Model Hamiltonians and qualitative considerations in the physics of materials. Or what do we want to.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
When Band Theory Does Not Work and What One Can Do About It: Dynamical Mean Field Approach to Strongly Correlated Materials Gabriel Kotliar Physics Department.
Electronic Structure of Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Correlated Materials : a DMFT Perspective
Dynamical Mean Field Theory for Electronic Structure Calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Dynamical Mean Field Theory in Electronic Structure Calculations:Applications to solids with f and d electrons Gabriel Kotliar Physics Department and Center.
Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University ISSP-Kashiwa 2001 Tokyo 1 st -5 th October.
Applications of DMFT to correlated electrons.
Dynamical Mean Field Theory DMFT and electronic structure calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Challenges in Strongly Correlated Electron Systems: A Dynamical Mean Field Theory Perspective Challenges in Strongly Correlated Electron Systems: A Dynamical.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Colloquium.
Optical Properties of Strongly Correlated Electrons: A Dynamical Mean Field Approach G. Kotliar Physics Department and Center for Materials Theory Rutgers.
The Mott Transition and the Challenge of Strongly Correlated Electron Systems. G. Kotliar Physics Department and Center for Materials Theory Rutgers PIPT.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline Model Hamiltonians and qualitative considerations in the physics of materials. Or what do we want to.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mean-Field : Classical vs Quantum Classical case Quantum case Phys. Rev. B 45, 6497 A. Georges, G. Kotliar (1992)
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University UBC September.
Towards Realistic Electronic Structure Calculations of Correlated Materials Exhibiting a Mott Transition. Gabriel Kotliar Physics Department and Center.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Statistical.
Dynamical Mean Field Theory, Mott transition and Electronic Structure of Actinides Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Introduction to Strongly Correlated Electron Materials, Dynamical Mean Field Theory (DMFT) and its extensions. Application to the Mott Transition. Gabriel.
Introduction to Dynamical Mean Field Theory (DMFT) and its Applications to the Electronic Structure of Correlated Materials Zacatecas Mexico PASSI School.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Theoretical Treatments of Correlation Effects Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Chemical.
Cellular DMFT studies of the doped Mott insulator Gabriel Kotliar Center for Materials Theory Rutgers University CPTH Ecole Polytechnique Palaiseau, and.
Dynamical Mean Field Theory or Metallic Plutonium Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University IWOSMA Berkeley.
Correlation Effects in Itinerant Magnets, Application of LDA+DMFT(Dynamical Mean Field Theory) and its static limit the LDA+U method. Gabriel Kotliar Physics.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Spectral Density Functional: a first principles approach to the electronic structure of correlated solids Gabriel Kotliar Physics Department and Center.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
IJS Strongly correlated materials from Dynamical Mean Field Perspective. Thanks to: G.Kotliar, S. Savrasov, V. Oudovenko DMFT(SUNCA method) two-band Hubbard.
Elemental Plutonium: a strongly correlated metal Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Collaborators: S.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline, Collaborators, References Introduction to extensions of DMFT for applications to electronic structure.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective G. Kotliar Physics Department and Center for Materials Theory Rutgers 5 th International.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS La 1-x Sr x TiO 3 photoemission.
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Jerusalem Winter.
Correlated Materials: A Dynamical Mean Field Theory (DMFT) Perspective. Gabriel Kotliar Center for Materials Theory Rutgers University CPhT Ecole Polytechnique.
The Mott transition in f electron systems, Pu, a dynamical mean field perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Merging First-Principles and Model Approaches Ferdi Aryasetiawan Research Institute for Computational Sciences, AIST, Tsukuba, Ibaraki – Japan.
Mon, 6 Jun 2011 Gabriel Kotliar
Dynamical Mean Field Theory Approach to the Electronic Structure Problem of Solids Gabriel Kotliar Physics Department and Center for Materials Theory.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
UC Davis conference on electronic structure, June. 2009
Presentation transcript:

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as a function of doping, pressure temperature etc.

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Limit of large lattice coordination Metzner Vollhardt, 89 Muller-Hartmann 89

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT Impurity cavity construction: A. Georges, G. Kotliar, PRB, (1992)] Weiss field

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mean-Field : Classical vs Quantum Classical case Quantum case Phys. Rev. B 45, 6497 A. Georges, G. Kotliar (1992)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Single site DMFT, functional formulation Express in terms of Weiss field (semicircularDOS) The Mott transition as bifurcation point in functionals o  G  or F[  ], (G. Kotliar EPJB 99) Local self energy (Muller Hartman 89)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Review of DMFT, technical tools for solving DMFT eqs.., applications, references…… A. Georges, G. Kotliar, W. Krauth and M. Rozenberg Rev. Mod. Phys. 68,13 (1996)]

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS X.Zhang M. Rozenberg G. Kotliar (PRL 1993) Spectral Evolution at T=0 half filling full frustration

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights from DMFT  Low temperatures several competing phases. Their relative stability depends on chemistry and crystal structure  High temperature behavior around Mott endpoint, more universal regime, captured by simple models treated within DMFT

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Schematic DMFT phase diagram Hubbard model (partial frustration) Rozenberg et.al. PRL (1995)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Kuwamoto Honig and Appell PRB (1980)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Phase Diag: Ni Se 2-x S x

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights from DMFT  The Mott transition is driven by transfer of spectral weight from low to high energy as we approach the localized phase  Control parameters: doping, temperature,pressure…

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Evolution of the Spectral Function with Temperature Anomalous transfer of spectral weight connected to the proximity to the Ising Mott endpoint (Kotliar Lange and Rozenberg 2000)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. ARPES measurements on NiS 2-x Se x Matsuura et. Al Phys. Rev B 58 (1998) 3690

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights from DMFT: think in term of spectral functions (branch cuts) instead of well defined QP (poles ) Resistivity near the metal insulator endpoint ( Rozenberg et. Al 1995) exceeds the Mott limit

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Anomalous Resistivity and Mott transition Ni Se 2-x S x

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights from DMFT Mott transition as a bifurcation of an effective action Important role of the incoherent part of the spectral function at finite temperature Physics is governed by the transfer of spectral weight from the coherent to the incoherent part of the spectra. Real and momentum space. –

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT  Spin Orbital Ordered States  Longer range interactions Coulomb, interactions, Random Exchange (Sachdev and Ye, Parcollet and Georges, Kajueter and Kotliar, Si and Smith, Chitra and Kotliar,)  Short range magnetic correlations. Cluster Schemes. (Ingersent and Schiller, Georges and Kotliar, cluster expansion in real space, momentum space cluster DCA Jarrell et.al., C-DMFT Kotliar et. al ).

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT  Formulation as an electronic structure method (Chitra and Kotliar)  Density vs Local Spectral Function  Extensions to treat strong spatial inhomogeneities. Anderson Localization (Dobrosavlevic and Kotliar),Surfaces (Nolting),Stripes (Fleck Lichtenstein and Oles)  Practical Implementation (Anisimov and Kotliar, Savrasov, Katsenelson and Lichtenstein)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Anomalous Resistivity:LiV 2 O 4 Takagi et.al. PRL 2000

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Anomalous Resistivities: Doped Hubbard Model (Prushke and Jarrell 1993)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Anomalous Resistivities: Doped Hubbard Model G. Palsson 1998 IPT NCA

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Failure of the “Standard Model”: Cuprates Anomalous Resistivity

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Specific Heat Titanates

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mott transition in layered organic conductors S Lefebvre et al. cond-mat/

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Standard Model Typical Mott values of the resistivity 200  Ohm- cm Residual instabilites SDW, CDW, SC Odd # electrons -> metal Even # electrons -> insulator  Theoretical foundation: Sommerfeld, Bloch and Landau  Computational tools DFT in LDA  Transport Properties, Boltzman equation, low temperature dependence of transport coefficients

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Failure of the “Standard Model”: Cuprates Anomalous Resistivity

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Solving the DMFT equations Wide variety of computational tools (QMC, NRG,ED….) Analytical Methods

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT  Formulation as an electronic structure method (Chitra and Kotliar)  Density vs Local Spectral Function  Extensions to treat strong spatial inhomogeneities. Anderson Localization (Dobrosavlevic and Kotliar),Surfaces (Nolting),Stripes (Fleck Lichtenstein and Oles)  Practical Implementation (Anisimov and Kotliar, Savrasov, Katsenelson and Lichtenstein)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT: Methods of Solution

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT  Spin Orbital Ordered States  Longer range interactions Coulomb, interactions, Random Exchange (Sachdev and Ye, Parcollet and Georges, Kajueter and Kotliar, Si and Smith, Chitra and Kotliar,)  Short range magnetic correlations. Cluster Schemes. (Ingersent and Schiller, Georges and Kotliar, cluster expansion in real space, momentum space cluster DCA Jarrell et.al., C-DMFT Kotliar et. al ).

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Strongly Correlated Electrons  Competing Interaction  Low T, Several Phases Close in Energy  Complex Phase Diagrams  Extreme Sensitivity to Changes in External Parameters  Need for Quantitative Methods

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Failure of the Standard Model: Anomalous Spectral Weight Transfer Optical Conductivity o of FeSi for T=,20,20, and 250 K from Schlesinger et.al (1993) Neff depends on T

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Landau Functional G. Kotliar EPJB (1999)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS LDA functional Conjugate field, V KS (r)

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Minimize LDA functional Kohn Sham eigenvalues, auxiliary quantities.

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS A time-honored example: Mott transition in V 2 O 3 under pressure or chemical substitution on V-site

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Ising character of the transfer of spectral weight Ising –like dependence of the photo-emission intensity and the optical spectral weight near the Mott transition endpoint

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Parallel development: Fujimori et.al

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Photoemission LaTiO3

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS