H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Magnetismo y Superconductividad: Principios fundamentales, sistemas experimentales y líneas de investigación en el laboratorio de bajas temperaturas Luis.
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Kitaoka lab Itohara Keita
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
Magnetism in 4d perovskite oxides Phillip Barton 05/28/10 MTRL 286G Final Presentation.
Electronic structure of La2-xSrxCuO4 calculated by the
Experimental Techniques Magnetization Specific heat Resistivity Low temperatures Small samples (~1 mg) High magnetic fields.
Magnetic Susceptibility
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
                  Electrical transport and magnetic interactions in 3d and 5d transition metal oxides Kazimierz Conder Laboratory for Developments and.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Superconductivity in Zigzag CuO Chains
P461 - magnetism1 Magnetic Properties of Materials H = magnetic field strength from macroscopic currents M = field due to charge movement and spin in atoms.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
The Three Hallmarks of Superconductivity
Magnetocaloric effects in intermetallic compounds
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Magnetism III: Magnetic Ordering
MAGNETIC MATERIALS  Origin of Magnetism  Types of Magnetism  Hard and Soft Magnets Magnetic Materials – Fundamentals and Device Applications Nicola.
Magnetic Properties of Materials
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Chemistry Solid State Chemistry Transition Metal Oxide Rock Salt and Rutile: Metal-Metal Bonding Chemistry 754 Solid State Chemistry Lecture 23 May.
11. Diamagnetism and Paramagnetism
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
An Introduction to Fe-based superconductors
Canadian Neutron Beam Centre, National Research Council
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Neutron Scattering Studies of Tough Quantum Magnetism Problems
  Satyendra Prakash Pal DEPARTMENT OF PHYSICAL SCIENCES
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Para, Dia and Ferromagnetism. Magnetization The presence (or absence) of a significant magnetic moment for atoms will govern how they respond to magnetic.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Anomalous Local Transport in MicrofabricatedSr 2 RuO 4 -Ru Eutectic Junction Univ. AISTHiroshi Kambara Satoshi Kashiwaya Tokyo.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Interplay of disorder and interactions
Anisotropic superconducting properties
Superconductivity Res. T
Exchange bias and magnetocaloric effect in LaCr0. 9Ru0
Masaki Kubota, Yosuke Watanabe, Hiroshi Nakatsugawa
CHEM 251 INORGANIC CHEMISTRY Chapter 4.
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai Superconductivity and Anomalous Magnetic Properties of the New RuCa 2 RCu 2 O 8+  (R = Pr-Gd) System

Introduction Magnetic Superconductivity in RuSr 2 RCu 2 O 8+  Ru-1212 system (R = Sm, Eu, Gd) - tetragonal TlBa 2 CaCu 2 O 7+  -type (1212) structure - weak ferromagnetic metal T m ~ 135 K - high-T c superconductor T c ~ 0-65 K *sensitive to oxygen  - hole concentration *coexistence with ferromagnetic order (T c < T m ) Bauernfeind et al., Physica C 254, 151 (1995) Bernhard et al., PRB 59, (1999) Awana et al., Physica C 357 (2001)

RuSr 2 GdCu 2 O 8+  Tetragonal 1212-type P4/mmm CuO 5 RuO 6 Gd Sr

RuSr 2 GdCu 2 O 8+  T m = 133 K, T c = K Bernhard et al., PRB 59, (1999) R(T)  v (T)(ZFC) S(T) M m (T)(FC)

Normal or abnormal ferromagnetic magnetic hysteresis curve M(B a ) for T < T m = 135 K? Current oxygen-deficient sample superconducting T c ~ 10 K superconducting signal? Bernhard et al., PRB 59, (1999)

ZFC/FC susceptibility Superconducting diamagnetic signal? Current oxygen-deficient sample superconducting T c ~ 10 K superconducting signal? Cordero et al., PRB 67, (2003)

Superconducting diamagnetic signal appears only in very low applied fields due to strong ferromagnetic background M g (T)(FC) Papageorgiou & Braun, PRB 66, (2002)

T c only in R = Sm, Eu, Gd of RuSr 2 RCu 2 O 8+  With oxygen effect - hole concentration

What about the RuCa 2 RCu 2 O 8+  system (R = La, Ce, Pr, Nd, Sm, Eu, Gd)? First try R = Pr : RuCa 2 PrCu 2 O 8+  Question

Results and Discussion RuCa 2 PrCu 2 O 8+  RuCa 2-x Sr x PrCu 2 O 8+  system (2  x  0) RuCa 2 RCu 2 O 8+  system (R = La, Ce, Pr, Nd, Sm, Eu, Gd) Sample preparation: Direct one-step, oxygen annealed

Distorted orthorhombic variation of tetragonal 1212 structure: a o ~ b o ~  2a t c o ~ 2c t

Abnormal low temperature magnetic behavior at different measuring times oxygen diffusion effect

Normal ZFC/FC susceptibility and magnetic hysteresis for standard high-T c superconductors without magnetic order

Magnetization M m (T) in different applied fields Anomalous FC/ZFC behavior

Normal paramagnetic behavior for T > T m & Mgnetic order (weak-ferromagnetic or spin-glass?) for T m > T > T c

Weak magnetization relaxation at T= 45 K < T m (itinerant weak ferromagnetism almost spin-glass-like)

Spin-glass-like weak hysteresis m(B a ) and relaxation m(t) for paramagnetic Ca 1-x Sr x RuO 3 x = 0 & 0.2 Lin et al., JMMM, in press (2004)

Orthorhombic (distorted) Orthorhombic (pseudo-cubic) a ~ b ~ c/  2 Lattice distortion of CaRuO 3 compared with SrRuO 3

Compare the magnetic phase diagram of Ca 1-x Sr x RuO 3 system with RuA 2 RCu 2 O 8 with the same RuO 6 configuration

Ru 4/5+ 4d 4 /d 3 in RuO 6 - 4d n in t 2g bands due to strong RuO 6 octahedral crystal field splitting  cf and weak Hund’ rule exchange coupling J H -strong Ru 4d xy,yz,zx -O 2p x,y,z hybridization -large on-site Coulomb repulsion U dd -Long-range magnetic order (or short-range spin glass) egeg t 2g d Coulomb repulsion U dd Charge transfer  On-site Coulomb repulsion energy U dd = E(d n-1 ) + E(d n+1 ) - 2E(d n ) Charge transfer energy  = E(d n+1 L) – E(d n )

Origin of weak, itinerant ferromagnetic order - self-doing with anisotropic Ru 4d xy,yz,zx -O 2p x,y,z hybridization drives the resulting mixed-valent system metallic and ferromagnetic via double exchange interaction - lower T m ~ 50 K for RuCa 2 PrCu 2 O 8 as compared with T m ~ 135 K for RuSr 2 GdCu 2 O 8 (in more robust local moment regime) indicates weaker double exchange coupling strength J de due to RuO 6 distortion

Complex magnetic flux dynamics for T < T c < T m in magnetization due to interplay between superconductivity and itinerant ferromagnetic order

FC and ZFC magnetization at 10 K show complex interplay between superconductivity and itinerant ferromagnetic order

Low field (1 G) time relaxation M(t) at 10 K < T c < T m

1-G and 1-kG time relaxation M(t) at 10 K < T c < T m

RuCa 2 PrCu 2 O 8+  - distorted orthorhombic variation of tetragonal 1212 structure: a o ~ b o ~  2a t c o ~ 2c t - Ru 4/5+ itinerant weak ferromagnetic metal close to spin-glass with T m ~ 50 K - superconductor T c ~ K *sensitive to oxygen  -- hole concentration), *coexistence with weak magnetic order - anomalous ZFC (Meissner) & FC (field expulsion) behavior due to interplay with ferromagnetic order

Powder x-ray diffraction patterns of tetragonal RuSr 2 PrCu 2 O 8+ 

Powder x-ray diffraction patterns for RuCa 2-x Sr x PrCu 2 O 8+ 

Low temperature spin-glass-like behavior for tetragonal RuSr 2 PrCu 2 O 8+  Ref: Awana et al. Physica C , 121 (2001).

Low temperature spin-glass-like behavior for tetragonal RuSr 2 PrCu 2 O 8+ 

Weak magnetization relaxation at T= 10 K < T m spin-glass-like for tetragonal RuSr 2 PrCu 2 O 8+ 

Field-cooled (FC) susceptibility for RuCa 2-x Sr x PrCu 2 O 8+ 

Magnetic behavior for RuCa 2-x Sr x PrCu 2 O 8+  (x = 0, 0.1)

RuCa 2-x Sr x PrCu 2 O 8+  system - orthorhombic 1212 structure only near RuCa 2 PrCu 2 O 8+  (x ~ 0) - multiphase samples for 0 < x < 2 - diamagnetic, superconducting signal observed only for x  spin-glass-like behavior for tetragonal RuSr 2 PrCu 2 O 8+  (x = 2)

Powder x-ray diffraction patterns for RuCa 2 RCu 2 O 8+  (R = Pr, Gd)

Magnetic behavior for RuCa 2 RCu 2 O 8+  (R = Pr, Gd)

Powder x-ray diffraction patterns for RuCa 2 RCu 2 O 8+ 

Field-cooled (FC) susceptibility for RuCa 2-x Sr x PrCu 2 O 8+   (R = La, Ce, Pr, Nd, Sm, Eu, Gd)

Zero-field-cooled (ZFC) susceptibility for RuCa 2-x Sr x PrCu 2 O 8+  (R = La, Ce, Nd, Sm, Eu, Gd)

RuCa 2 RCu 2 O 8+  system - orthorhombic 1212 phase in R = Pr, Nd, Sm, Eu, Gd - magnetic order T m ~ K for R = Pr-Gd - superconductivity T c ~ K for R = Pr-Gd with anomalous ZFC and FC behavior due to magnetic order - weak paramagnetic spin-glass-like behavior signal for R = La, Ce

Conclusions Superconductivity are observed in the RuCa 2 RCu 2 O 8+d (R = Pr, Nd, Sm, Eu, Gd) system with the distorted orthorhombic 1212-type structure Structural and anomalous magnetic properties are strongly correlated with the RuO 6 distortion and Ru 4d-O2p hybridization with weak, anisotropic double-exchange coupling strength due to distortion

Unit for magnetic measurements Total magnetic moment m (emu) [Gaussian system] Volume magnetization M v (emu/cm 3  G) Mass magnetization M g (emu/g = Gcm 3 /g) Molar magnetization M m (emu/mol = Gcm 3 /mol) (M m  M g molar formula unit weight) Magnetic moment per formula unit m (  B /f.u.) (m  M m /(N o  B ) Volume magnetic susceptibility  v  M v /B a (emu/cm 3 G = 1) Mass magnetic susceptibility  g  M g /B a (emu/gG = cm 3 /g) Molar magnetic susceptibility  m (emu/molG = cm 3 /mol) (  m   g molar formula unit weight) [good for SI system with  g  M g /  0 B a ]

Magnetic behavior  m (T) for bulk and powder samples Diamagnetic signal, bulk superconductivity