Multiwavelength aerosol lidar and vertical-wind lidar observations during COPS Dietrich Althausen, Detlef Müller, Ronny Engelmann, Matthias Tesche, Patric.

Slides:



Advertisements
Similar presentations
UPRM Lidar lab for atmospheric research 1- Cross validation of solar radiation using remote sensing equipment & GOES Lidar and Ceilometer validation.
Advertisements

Smoke plume optical properties and transport observed by a multi-wavelength lidar, sunphotometer and satellite Lina Cordero a,b Yonghua Wu a,b, Barry Gross.
ENVIRONMENTAL INFORMATICS GEOINFORMATION PRODUCTS B ROCKMANN C ONSULT MTR * ESTEC* VRAME (Verticaly Resolved Aerosol Model for Europe from.
A Dictionary of Aerosol Remote Sensing Terms Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Short.
The Barbados Cloud Observatory: a first outlook
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
AREHNA Workshop-Mobility and Health, 3-6 May 2003, Kos, Greece EARLINET The European Aerosol Research Lidar Network A. PAPAYANNIS Lasers and Applications.
Aerosol and Cloud Microphysics Working Group Dietrich Althausen, Andrea Riede, Herman Russchenberg, Aldo Amodeo, Susanne Crewell, Paolo Di Girolamo, Stephen.
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Water vapour intercomparison effort in the frame of the Convective and Orographically-induced Precipitation Study 6th COPS Workshop 27 – 29 February 2008.
THE BLACK FOREST STORM OF 15 JULY 2007: NUMERICAL SIMULATION AND SENSITIVITY STUDIES Evelyne Richard 1, Jean-Pierre Chaboureau 1 Cyrille Flamant 2 and.
Institut für Physik der Atmosphäre Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
Implementation activities I 13:30 – 15:00 Technology and Methodology I Birgit Heese: Capabilities and limits of aerosol measurements with ceilometer Dietrich.
Lidar algorithms to retrieve cloud distribution, phase and optical depth Y. Morille, M. Haeffelin, B. Cadet, V. Noel Institut Pierre Simon Laplace SYMPOSIUM.
David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC
Correct atmospheric optics modelling: Theory and Experiment Irina Melnikova Observatory of Environmental Safety Resource Center, Research Park St.Petersburg.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
VRAME: Vertically Resolved Aerosol Model for Europe from a Synergy of EARLINET and AERONET data Elina Giannakaki, Ina Mattis, Detlef Müller, Olaf Krüger.
Observation of a Saharan dust outbreak on 1-2 August 2007: determination of microphysical particle parameters Paolo Di Girolamo 1, Donato Summa 1, Rohini.
CREST Lidar Network (CLN)
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
EARLINET and CALIPSO Ulla Wandinger, Anja Hiebsch, Ina Mattis, Matthias Tesche, Patric Seifert Leibniz Institute for Tropospheric Research, Leipzig, Germany.
Proposal for a Research Infrastructure for Advanced Aerosol Observations and Capacity Building in China Alfred WIEDENSOHLER Leibniz Institute for Tropospheric.
FOREST FIRE AEROSOLS Optical and microphysical properties from EARLINET observations D. Balis Laboratory of Atmospheric Physics, Aristotle University of.
NARVAL South Lutz Hirsch, Friedhelm Jansen Sensor Synergy While Radars and Lidars provide excellent spatial resolution but only ambiguous information on.
Determination of aerosol components from multiwavelength/depolarization measurements Nobuo SUGIMOTO, Tomoaki Nishizawa, and Atsushi Shimizu National Institute.
Raman lidar characterization of PBL structure during COPS Donato Summa a, Paolo Di Girolamo a, Dario Stelitano a, Tatiana Di Iorio b a DIFA, Univ. della.
Automatic Operation of Lidar Systems at Remote Sites – Polly NET – Dietrich Althausen, Ronny Engelmann, Holger Baars, Birgit Heese, Thomas Kanitz, Detlef.
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
Smoke Aerosols, Clouds, Rainfall and Climate (SMOCC)
Hyperspectral Data Applications: Convection & Turbulence Overview: Application Research for MURI Atmospheric Boundary Layer Turbulence Convective Initiation.
Studies of Emissions & Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC 4 RS) Brian Toon Department of Atmospheric and Oceanic.
Determination of atmospheric structures, aerosol optical properties and particle type with the R-MAN 510 Raman dual polarization lidar super ceilometer.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]): Vincenzo Rizi Ecole Polytechnique (EPFL [13]): Bertrand Calpini Observatory of.
Class presentation Applications of the Helsinki Test Bed CL31 Ceilometer data Anu-Maija Sundström University of Helsinki Division of Atmospheric.
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
LASE Measurements During IHOP Edward V. Browell, Syed Ismail, Richard A. Ferrare, Susan A Kooi, Anthony Notari, and Carolyn F. Butler NASA Langley Research.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
RICO Modeling Studies Group interests RICO data in support of studies.
Group proposal Aerosol, Cloud, and Climate ( EAS 8802) April 24 th, 2006 Does Asian dust play a role as CCN? Gill-Ran Jeong, Lance Giles, Matthew Widlansky.
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
AEROSOL CLASSIFICATION RETRIEVAL ALGORITHMS FOR EARTHCARE/ATLID, CALIPSO/CALIOP, AND GROUND-BASED LIDARS Sugimoto, N., T. Nishizawa, I. Matsui, National.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
CLOUD PHYSICS LIDAR for GOES-R Matthew McGill / Goddard Space Flight Center April 8, 2015.
Monitoring of Eyjafjallajökull Ash Layer Evolution over Payerne- Switzerland with a Raman Lidar Todor Dinoev, Valentin Simeonov*, and Mark Parlange Swiss.
A new method for first-principles calibration
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
II GALION workshop - Geneva, Switzerland – September 21-23, 2010 EARLINET contribution to SDS-WAS Europe – North Africa regional node Lucia Mona Istituto.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
ACE - Aerosol Working Group Science Traceability Matrix Category 1: Aerosols, Clouds and Climate Category 2: Aerosols, Clouds and Precipitation.
Modeling the emission, transport, and optical properties of Asian dust storms using coupled CAM/CARMA model Lin Su and Owen B. Toon Laboratory for Atmospheric.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Optical Properties of Mineral Dust Aerosol in the Thermal Infrared IRS 2016 Claas H. Köhler Claas H. Köhler | IRS 2016 | DLR.de Chart 1.
Cloud Physics Lidar on the Global Hawk HS3 Science Team Meeting May 7-9, 2013 Matthew McGill / GSFC Dennis Hlavka / SSAI Andrew Kupchock/ SSAI Steve Palm.
Mayurakshi Dutta Department of Atmospheric Sciences March 20, 2003
Niels Larsen and Johannes K. Nielsen Danish Meteorological Institute Balloon-borne backscatter measurements of tropical cirrus from Bauru Microphysical.
Card 2. Option to use “Aerosol Plus” a parameter that characterizes the user defined aerosols and optical properties.
What Are the Implications of Optical Closure Using Measurements from the Two Column Aerosol Project? J.D. Fast 1, L.K. Berg 1, E. Kassianov 1, D. Chand.
in-situ measurements in the framework of the ACTRIS-2 campaigns in:
Vertically resolved CALIPSO-CloudSat aerosol extinction coefficient in the marine boundary layer and its co-variability with MODIS cloud retrievals David.
Regional Radiation Center (RRC) II (Asia)
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
ECV definitions Mapping of ECV product with OSCAR variables
PHY Lecture 16 Lidar remote sensing.
IOP2b: 2013/12/11.
EARLINET/ACTRIS IOP in summer 2012
CALIPSO First-Light Observations – All 3 Lidar Channels
Presentation transcript:

Multiwavelength aerosol lidar and vertical-wind lidar observations during COPS Dietrich Althausen, Detlef Müller, Ronny Engelmann, Matthias Tesche, Patric Seifert, Julia Fruntke, Christina Herold, Luise Hentschel, (Albert Ansmann) Leibniz Institute for Tropospheric Research, Leipzig, Germany

Aerosol and vertical–velocity profiling and cloud glaciation observations during COPS Applicant: Albert Ansmann Contribution to ACM and SPP 1167 (2 year period) Aerosol characterization Obtaining geometrical, optical, and microphysical properties of aerosols and clouds  Derivation of microphysical properties such as aerosol number concentration Vertical Wind in the upper PBL (at cloud base) Studies of heterogeneous ice formation Investigating the effect of aerosol particles and meteorological conditions on cloud glaciation  Many Saharan dust cases and forest fire cases observed DFG proposal

3 months of data, hours Backscatter Extinction lidar-Ratio Temperature Humditiy profiling Apparatus Wind Lidar

INDOEX, Maldives SAMUM I, Morocco, May-Jun 2006 COPS, Black F., Jun-Aug 2007 SAMUM II, Cape Verde, Jan/Feb+May/Jun x beta 2 x sigma

Inversion algorithm Input: –6 backscatter coefficients –2 extinction coefficients Output: –volume size distribution –effective radius –total volume concentration –total surface-area concentration –mean complex refractive index –single-scattering albedo COPS: β(532nm) ~ n (particle number conc.)

VALIDATION OF INVERSION RESULTS WITH AIRBORNE IN-SITU MEASUREMENTS COPS: we may only get the order of magnitude of the particle number conc. (100 cm-3, 1000 cm-3, cm-3) DLR Falcon

Aerosol type: finger prints Aerosol type Lidar ratio (sr) Depol. ratio (%) Maritime S 355 =S 532 (low) <5% (low) Urban S 355 >=S 532 (high) <5% (low) Forest fire smoke S 355 <S 532 (high) <10-15% (med) Desert Dust S 355 >=S 532 (high) 25-35% (high) 355 nm versus 532 nm

COPS: Some measurement examples

PBL+CU Vertical wind

P B L d e v e l o p m e n t in terms of vertical wind profile of horiz. wind speed and direction

Deep cumulus tower Spectacular event

Heterogenous ice formation melting layer uncalibrated depol. ratio (710nm)

AC ICE terminal velocities CI Bertha + Wili

Topic 1 Topic 2 PBL heterog. ice form.

Influence of Saharan dust and biomass burning smoke on cloud glaciation over the northern tropical Atlantic Ocean (Cape Verde) during SAMUM II Published February 2008 SAMUM II: 15 Jan – 14 Feb 2008, Praia, Cabo Verde (15 o N, 23.5 o W) Our work on heterogenous ice formation …upcoming

Next future (beginning in March 2008): Diploma student working on WiLi data (wind fields) Diploma student working on Raman lidar data (water vapor and temperature)

BERTHA, Heselbach, 532nm backscatter signal PBL, sunny day dust

BERTHA, water vapor Raman lidar, Heselbach SONDE LIDAR, 20 min, 60m smoothingLIDAR, 1 min, 240 m smoothing LIDAR 532 nm backscatter signal g/kg

COPS: Bertha (Raman lidar) water vapor nighttime, 1 min res., 60 m height res.