Developmental models. Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway.

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

Bivariate analysis HGEN619 class 2007.
MCUAAAR: Methods & Measurement Core Workshop: Structural Equation Models for Longitudinal Analysis of Health Disparities Data April 11th, :00 to.
Confirmatory Factor Analysis
Univariate Model Fitting
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Sex-limitation Models Brad Verhulst, Elizabeth Prom-Wormley (Sarah, Hermine, and most of the rest of the faculty that has contributed bits and pieces to.
Latent Growth Curve Modeling In Mplus:
Structural Equation Modeling
Factor analysis Caroline van Baal March 3 rd 2004, Boulder.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
GRA 6020 Multivariate Statistics The regression model OLS Regression Ulf H. Olsson Professor of Statistics.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Bivariate Model: traits A and B measured in twins cbca.
ACDE model and estimability Why can’t we estimate (co)variances due to A, C, D and E simultaneously in a standard twin design?
(Re)introduction to Mx. Starting at the beginning Data preparation Mx expects 1 line per case/family Almost limitless number of families and variables.
Phenotypic Factor Analysis Marleen de Moor & Meike Bartels Department of Biological Psychology, VU University Amsterdam
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
David M. Evans Sarah E. Medland Developmental Models in Genetic Research Wellcome Trust Centre for Human Genetics Oxford United Kingdom Twin Workshop Boulder.
Regressing SNPs on a latent variable Michel Nivard & Nick Martin.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Phenotypic multivariate analysis. Last 2 days……. 1 P A A C C E E 1/.5 a cecae P.
Structural Equation Modeling Continued: Lecture 2 Psy 524 Ainsworth.
Path Analysis HGEN619 class Method of Path Analysis allows us to represent linear models for the relationship between variables in diagrammatic.
Standard genetic simplex models in the classical twin design with phenotype to E transmission Conor Dolan & Janneke de Kort Biological Psychology, VU 1.
Structural Equation Modeling (SEM) With Latent Variables James G. Anderson, Ph.D. Purdue University.
Institute of Psychiatry King’s College London, UK
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Extending Simplex model to model Ph  E transmission JANNEKE m. de kort & C.V. DolAn Contact:
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Longitudinal Modeling Nathan Gillespie & Dorret Boomsma \\nathan\2008\Longitudinal neuro_f_chol.mx neuro_f_simplex.mx jepq6.dat.
G Lecture 91 Measurement Error Models Bias due to measurement error Adjusting for bias with structural equation models Examples Alternative models.
Longitudinal Modeling Nathan & Lindon Template_Developmental_Twin_Continuous_Matrix.R Template_Developmental_Twin_Ordinal_Matrix.R jepq.txt GenEpiHelperFunctions.R.
Attention Problems – SNP association Dorret Boomsma Toos van Beijsterveldt Michel Nivard.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Frühling Rijsdijk & Kate Morley
Welcome  Log on using the username and password you received at registration  Copy the folder: F:/sarah/mon-morning To your H drive.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Categorical Data HGEN
Extended Pedigrees HGEN619 class 2007.
Department of Psychiatry, Washington University School of Medicine
Invest. Ophthalmol. Vis. Sci ;57(1): doi: /iovs Figure Legend:
Genetic simplex model: practical
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
Heterogeneity HGEN619 class 2007.
Longitudinal Analysis
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Modelos para datos longitudinales
Univariate modeling Sarah Medland.
in the classical twin design
(Re)introduction to Mx Sarah Medland
Longitudinal Modeling
MANOVA Control of experimentwise error rate (problem of multiple tests). Detection of multivariate vs. univariate differences among groups (multivariate.
Rachael Bedford Mplus: Longitudinal Analysis Workshop 23/06/2015
Multivariate Genetic Analysis: Introduction
Autoregressive and Growth Curve Models
Presentation transcript:

Developmental models

Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway –independent pathway

Repeated measures developmental models –simplex models –growth models

Structural Equation Model measurement model –relations between latent and observed variables –y =  f + u structural equation model –relations among the latent variables –f = B f + z

Longitudinal simplex pattern correlations fall away as time between occasions increase – time –time 1 1 –time –time –time –time

Simplex model first-order auto-regressive process each latent variable is influenced by the preceding latent variable: f t = b t f t-1 + z t b =autoregressive coefficient z = innovation

Path diagram units of measurement in the latent variables are the same as in the observed variables y i = f i + u i and f i = b i f i-1 + z i

First order autoregression (B matrix) regression coefficients (b2 to b4) – –b –0 b3 0 0 –0 0 b4 0 no regression coefficient for time 1 (b1)

Translation into Mx measurement model Y = F + U structural model : F = B* F + Z F = B * F + Z, therefore: F - B * F = Z, therefore: (I - B) * F = Z, therefore: F = (I - B) -1 * Z Y = (I - B) -1 * Z + U

Covariance structure Y = (I - B) -1 * Z + U Covariance (Y) = (I-B) -1 * var(Z) * ((I-B) -1 )’ + var(U) –B contains autoregressive coefficients –Z contains innovations –U contains error variances –I is identity matrix

Mx: Longitudinal IQ data (4 ages) in baal\simplex 6 rectangular datafiles (raw data): –iq4all.rec: N = 209 pairs –iq4[mzm/dzm/mzf/dzf/dos].rec missing = -1 8 variables: –t1iq5 t1iq7 t1iq10 t1iq12 t2iq5 t2iq7 t2iq10 t2iq12

Dutch IQ data (209 twin pairs) tested at ages 5, 7, 10 and 12 years not all twins participated at every occasion! –missing values: fit models to raw data –stability (subdiag=twin1, superdiag=twin2): – – – – –

2 Mx jobs 1factor: Pfact4iq.mx simplex: Psimp4iq.mx input file: iq4all.rec

output: variances f t = b t f t-1 + z t var(f t ) = b t 2 *var(f t-1 ) + var(z t ) variance of latent factor (twin 1): –time 1: var(f1) = var(z1) = = –time 2: var(f2) = * = variance of observed variable (twin 1): –time 1: var(f1) + var(u1) = = –time 2: var(f2) + var(u2) = = 212.8

output: covariances cov(f t, f t-1 ) = b t *var(f t-1 ) –cov (f2,f3) = 1.0 *162.2 = –cov (f3,f4) = 0.8 *189.0 = cov(f t, f t-2 ) = b t * b t-1 * var(f t-1 ) –cov (f1,f3) = 1.0 * 1.1 * = 147.5

output: correlations cor(f t, f t-1 ) = cov(f t,f t-1 )/[  var(f t )*  var(f t-1 )] –cor (f2,f3) = / [  *  189.0] = 0.93 –cor (f3,f4) = / [  *  115.8] = 1.00 –cor (f1,f3) = / [  *  189.0] = 0.93

Extension to genetic designs For each source of variation (G, E and C (not shown here)) a simplex structure is specified

parameters of the model variances of latent factors (G, C and E) at t=0 variances of innovations at t>0 autoregressive coefficients (transmission) variances of measurement errors

Genetic simplex model G(t) = b g (t) * G(t-1) + z g (t) E(t) = b e (t) * E(t-1) + z e (t) C(t) = b c (t) * C(t-1) + z c (t) Variances of latent variables: var(G(t)) = b g (t) 2 * var(G(t-1)) + var(z g (t)) var(E(t)) = b e (t) 2 * var(E(t-1)) + var(z e (t)) var(C(t)) = b c (t) 2 * var(C(t-1)) + var(z c (t))

specifications var(G1) = var(zg(1)) (innovation) var(G(t)) = b g (t) 2 * var(G(t-1)) + var(z g (t)) cov(G(t),G(t-1)) = b g (t)*var(G(t-1))

Covariance matrix (t=3, no measurement error) Genetic covariance Var(G1) bg2*var(G1) Var(G2) bg2*bg3*var(G1)bg3*var(G2) Var(G3) Environmental covariance Var(E1) be2*var(E1) Var(E2) be2*be3*var(E1)be3*var(E2) Var(E3)

To Mx! in baal\simplex: 5 datafiles: iq4[mzm/dzm/mzf/dzf/dos].rec 8 variables (missing = -1) –t1iq5 t1iq7 t1iq10 t1iq12 t2iq5 t2iq7 t2iq10 t2iq12 Mx job: guess.mx: incomplete! –For ages 5, 7 and 10 years only –Full of “mistakes” –fix, run for 3 ages, then adjust and run for 4 ages.

Twin correlations (N) MZM.77 (42).56 (37).73 (38).87 (30) DZM.53 (43).41 (41).54 (41).62 (33) MZF.77 (47).78 (42).87 (43).87 (36) DZF.73 (37).50 (34).46 (37).60 (31) DOS.65 (39).56 (38).50 (37).24 (34)

Structure MX job 3 groups to specify the genetic, unique environmental and common environmental simplex structures 2 data groups to describe the MZ and DZ covariance matrices MZ: G+C+E | G+C _ G+C | G+C+E / DZ: G+C+E | _ | G+C+E /