Weak decay of 5 Λ He and 12 Λ C : experimental results RIKEN H. Outa 10. Oct. 2006 HYP2006(Mainz) for KEK-PS E462 / E508 collaborations Osaka Univ. a,

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

De Mori Francesca,Turin University and INFN DAFNE04 Frascati, June Very preliminary results of Non Mesonic Weak Decays in FINUDA De Mori Francesca.
Nonmesonic weak decay of 5 Λ He and 12 Λ C and the effect of FSI on its observables H. Bhang for KEK-PS SKS collaboration (Seoul National University) Dafne04.
The Contribution of the Three-Body Process in the Nonmesonic Weak Decay of Λ Hypernuclei H. Bhang (Seoul National University) For KEK-PS E508 Collaboration.
The Three-body Process in the Weak Interaction Observed in the Decay of Λ hypernuclei H. Bhang for KEK-PS SKS collaboration (Seoul National University)
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Decay asymmetry in non-mesonic weak decay of light  hypernuclei T.Maruta KEK, JSPS fellow Oct./13/2006 Univ. KEK-PS E462/E508 collaborations.
The Quenching of Nucleon Yields in the Nonmesonic Weak Decay of Λ Hypernuclei and the Three-body Weak Interaction Process. H. Bhang (Seoul National University)
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
Oct. 13 th ray spectroscopy study of and Yue Ma Department of Physics Tohoku University.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
P10-2: Exclusive Study on the  N Weak Interaction in A=4  -Hypernuclei (update from P10) S. Ajimura (Osaka Univ.) Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U,
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Non-Mesonic Weak Decays of 5 Λ He and 12 Λ C Hypernuclei formed by (  +,K + ) Reaction RIKEN H. Outa 22. Aug FB18 (P28) for KEK-PS E462 / E508 collaborations.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Kinematics of  + n   p   0  p reaction Susumu Oda 2007/04/10-19.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Production of Double Strangeness Hypernuclei in 12 C(K -,K + ) Reaction at 1.67 GeV/c Choi Bong Hyuk Pusan National University For the E522 collaboration.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
Study of Neutron-Rich  Hypernuclei Tomokazu FUKUDA Osaka Electro-Communication University 2013/09/091EFB 22.
JOINT WORKSHOP JSPS CORE TO CORE SEMINAR and EU SPHERE NETWORK MEETING September 4 -6, 2010 Prague, Czech Republic Weak Decay Studies with FINUDA Stefania.
J-PARC Day-1 実験の状況・ 実験家から理論屋への要望 T.Takahashi (KEK) Contents 1. Aproved Exp. on J-PARC 2. How to produce S=-2 Systems 3. E05: (K-,K+) Spectroscopy.
Hypernuclear Physics at J-PARC H. Bhang (Seoul National University) APCTP ISBB workshop APCTP, Nov , 2008 I. J-PARC II. Hypernuclear Experiments.
Total photoabsorption on quasi free nucleons at 600 – 1500 MeV N.Rudnev, A.Ignatov, A.Lapik, A.Mushkarenkov, V.Nedorezov, A.Turinge for the GRAAL collaboratiion.
A search for strange tribaryonic states in the reaction Heejoong Yim Seoul National University For KEK-PS E549 collaboration.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
1 Medium modifications on vector meson in 12GeV p+A reactions Introduction Result of   e + e - analysis Result of   e + e - analysis Result of 
Weak decay of  in nuclear medium FCPPL-2015, USTC, April 8-12, 2015 Institute of High Energy Physics Qiang Zhao Institute of High Energy Physics, CAS.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Search for double-kaonic nuclear cluster (K - K - pp) using p+p reaction F.Sakuma, RIKEN discussion is based on Proc. Jpn. Acad., Ser. B, 87 (2011) ,
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
A search for strange tribaryonic states in the reaction H. Yim for KEK-E549 collaboration H. Bhang, J. Chiba, S. Choi, Y. Fukuda, T. Hanaki, R. S. Hayano,
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
Direct Measurement of Lifetime of Heavy Hypernuclei Using Photon Beam with CLAS and Fission Fragment Detector Liguang Tang Hampton University / JLAB Proposal.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Coincidence Measurement of the Weak Decay of 12 Λ C Hypernucleus and the Three-body Weak Interaction Process H. Bhang (Seoul National University) J-PARC.
Status of the 3-Body NMWD study and E18 H. Bhang (Seoul National University) KJ-PARC WS SNU, Sep , 2011 Outlines I. E18 Proposal status; 2 nd stage.
Search for the K  pp bound state via the in-flight 3 He(K ,n) reaction MESON2014 Yuta Sada for the E15 collaboration RCNP, Osaka Univ & RIKEN 1.
Search for a nuclear kaon bound state K - pp at the J-PARC K1.8 beam line. Dep. of physics, Kyoto University / JAEA Y. Ichikawa for E27 Collaboration Korea-Japan.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
2011/9/221 Koji Miwa Tohoku Univ. For the J-PARC E40 Collaboration Sigma proton scattering experiment E40.
Bryan Moffit Hall A Collaboration Meeting Studying Short Range Correlations in Nuclei at the Repulsive Core Limit via the Triple Coincidence (e,e’pN) Reaction.
First ExclusiveMeasurement of the Non-Mesonic Weak Deacay of 12  C First Exclusive Measurement of the Non-Mesonic Weak Deacay of 12  C Seoul national.
Λハイパー核の弱崩壊実験 S. Ajimura (RCNP) Nonmesonic weak decay of hypernuclei
Hypernuclear Spectroscopy with Electron Beams
Hypernuclear weak decay experiments at J-PARC
Deeply Bound Mesonic States -Case of Kaon-
High-pT Identified Charged Hadrons in √sNN = 200 GeV Au+Au Collisions
Identified Charged Hadron
Presentation transcript:

Weak decay of 5 Λ He and 12 Λ C : experimental results RIKEN H. Outa 10. Oct HYP2006(Mainz) for KEK-PS E462 / E508 collaborations Osaka Univ. a, KEK b, GSI c, Seoul Univ. d, Tohoku Univ. e, Univ.of Tokyo f, Tokyo Inst. Tech. g, KRISS h, RIKEN i S. Ajimura a, K.Aoki b, A.Banu c, H. C. Bhang d, T. Fukuda b,O. Hashimoto e, J. I. Hwang d, S. Kameoka e, B. H. Kang d, E. H. Kim d, J. H. Kim d, M. J. Kim d, T. Maruta f, Y. Miura e, Y. Miyake a, T. Nagae b, M. Nakamura f, S. N. Nakamura e,H. Noumi b, S. Okada g, Y. Okayasu e, H. Outa b, H. Park h,P. K. Saha b, Y. Sato b, M. Sekimoto b, T. Takahashi e,H. Tamura e, K. Tanida i, A. Toyoda b, K. Tsukada e,T. Watanabe e, H. J. Yim d Γ π _ Γ π _ (  → p + π - ) Γ π 0 Γ π 0 (  → n + π 0 ) Γ p Γ p (  +“ p ”→ n + p ) Γ n Γ n (  +“ n ”→ n + n ) Γ 2N (ΛNN →NNN) Mesonic q ~ 100MeV/c Non-Mesonic (NMWD) q ~ 400MeV/c 1/  HY =Γ tot ΓmΓm Γ nm Weak decay mode of  hypernucleus Study of the mechanism of baryon-baryon weak interaction 1

Contents of the present talk Γ(Λn→nn)/Γ(Λp→np) ratio n/p spectra from A=5,12 S. Okada et al. PLB 597 (2004) A= 5 B.H. Kang et al. PRL 96 (2006) A=12 M.J. Kim et al. PLB 641 (2006) 28 [ M. Kim, poster session ] Asymmetry parameter T. Maruta et al. nucl-ex/ [ T.Maruta, parallel session A2] Mesonic & non-mesonic decay widths [ S. Okada, poster session ] S. Kameoka et al. Nucl. Phys. A754 (2005) 173c-177c S. Okada et al. Nucl. Phys. A754 (2005) 178c-183c Two nucleon-induced NMWD (ΛNN→NNN) [H.Bhang, parallel session A2] Γ π _ Γ π _ (  → p + π - ) Γ π 0 Γ π 0 (  → n + π 0 ) Γ p Γ p (  +“ p ”→ n + p ) Γ n Γ n (  +“ n ”→ n + n ) Γ 2N (ΛNN →NNN) Mesonic q ~ 100MeV/c Non-Mesonic (NMWD) q ~ 400MeV/c 1/  HY =Γ tot ΓmΓm Γ nm Weak decay mode of  hypernucleus 2

 n /  p Theoretical N N N Λ Direct Quark mechanism Meson Exchange mechanism Λ N NN π,K,η,ρ,ω,K * 0.93±0.55 (Szymanski et al.) Exp. (for 5  He)  n /  p ratio : The most important observable used to study the isospin structure of the NMWD.  n /  p ratio puzzle Γ p Γ p (Λ+“ p ”→ n + p ) Γ n Γ n (Λ+“ n ”→ n + n )  n /  p ~ 0.1 Λ N NN W S π One Pion Exchange (OPE) Simple theoretical model Tensor-dominant  requires the final Nn pair to have isospin 0. 3

n n n p p p p p n n n p rescattering Final state interaction (FSI) effect Experimental difficulties in single nucleon measurement Difficulty in detecting neutrons.  There is no experiment to observe both of the protons and neutrons simultaneously with high statistics. Final state interaction (FSI) effect  not well established Distinguish between the FSI and ”  NN  nNN” process  NN→NNN (2N-induced process) Λ N N N W π N N (One of the theoretical model) 4

n p n p  n n p n p n p n p n Coincidence NMWD The present experiment KEK-PS E462/E508 Angular correlation 1) Angular correlation ( back-to-back, cos  <-0.8 ) Energy correlation 2) Energy correlation ( Q ~ E(N1)+E(N2) ~ 152MeV ) Angular correlation 1) Angular correlation ( back-to-back, cos  <-0.8 ) Energy correlation 2) Energy correlation ( Q ~ E(N1)+E(N2) ~ 152MeV ) NMWD : ΛN→NN * cosθ< - 0.8 * E(N1)+E(N2) cut Direct measurement of the  n /  p ratio Select ΛN→NN events w/o FSI effect & ΛNN→NNN. Select light hypernuclei to minimize FSI effect, 5  He and 12  C 5

π+π+ K+K+ Target: 6 Li, 12 C Excitation-energy spectra for 6  Li and 12  C 6.2×10 4 events 4.6×10 4 events decay counter 5  He 6  Li (g.s.)  5  He + p The ground state of 6  Li is above the threshold of 5  He + p. 5  He 6

Charged particle : ・ TOF (T2→T3) ・ tracking ( PDC ) Neutral particle : ・ TOF (target→NT) ・ T3 VETO p n π K Decay counter Setup (KEK-PS K6 & SKS) Decay arm N: 20cm×100cm×5cm T3: 10cm×100cm×2cm T2: 4cm×16cm×0.6cm Solid angle: 26% 9(T)+9(B)+8(S)% n p polarization axis 7

The g.s. peak is clearly seen in all spectra with coincident decay particles. inclusive w/ proton w/ pi± w/neutron w/ gamma previous experiment at BNL Excitation spectra w/ coincident decay particles for 5  He S. Kameoka et al. Nucl. Phys. A754 (2005) 173c S. Okada et al. Nucl. Phys. A754 (2005) 178c Excitation spectra w/ coincident decay particles for 12  C 8

n p n p n  N→nN n n n p p p p p n n n p  NN→nNN FSI re-scattering n n n p p p p p n n n p counts Q/2 Energy spectra (image) Energy distribute low energy region up to Q/2 broad peak around Q/2 continuous distribution Expected Spectrum 9

Single proton/neutron spectra from 5 Λ He and 12 Λ C S.Okada et al., PLB 597 (2004) 249 N n ~ 2N p Calculation by Garbarino et al. 10

np- & nn- angular distribution ( 5 Λ He)  n  p  nn /  np = 0.45±0.11±0.03 systematic error is mainly come from efficiency for neutron (6%) + acceptance(3%) Back-to-back 11

Coincidence Measurement (A=12) cos n + p n + n p + p E n + E p E n + E n E p + E p MeV  NN Counts 12 Λ C  n  p  nn /  np = 0.51±0.13±0.05 Analysis detail on Kim’s Poster 12

 n /  p 0.93±0.55 (Szymanski et al.) for 5  He Exp. Λ N NN W S π One Pion Exchange (OPE) Theo. N N N Λ Direct Quark mechanism Meson Exchange mechanism Λ N NN π,K,η,ρ,ω…  n /  p ratio Previous exp. (at BNL) N nn / N np ( 5  He)= 0.45±0.11±  He (E462) Kang et al. PRL 96 (2006) Γ n / Γ p ( 12  C)= 0.51±0.13±  C (E508) Kim et al. PLB641 (2006) 28 13

Asymmetry measurement of decay proton N(  ) = N 0 (1 + Acos  )  Asymmetry Asymmetry : Volume of the asymmetric emission from NMWD A = (R - 1) (R + 1) R = N(-)N(-) N(+)N(+), Asymmetry parameter = N 0 (1 +  Pcos  ) Difference of acceptance & efficiency → canceled out !! R = N(  + (-  ))×N(  - (+  )) N(  + (+  ))×N(  - (-  )) 1/2  K >0 ++ K+K+  /p KK    K <0 ++ K+K+ /p/p KK   P P 14

Initial state Final state Amplitude Isospin Parity 1S01S0 1S01S0 a1No 3P03P0 b1Yes 3S13S1 3S13S1 c0No 3D13D1 d0 1P11P1 e0Yes 3P13P1 f1 If assuming initial S state We can know the interference between states with different Isospin and Parity. (Applying  =1/2 rule) Importance of α nm measurement 15

 NM for 5 Λ He NMWD A=PA=P A  :Asymmetry of Pion    Asymmetry Parameter of Pion (= - 0.642±0.013) P   Polarization of Lambda  :Attenuation factor ・ Polarization of  ・ Asymmetry Parameter of Proton A p =  NM P   p Estimated from mesonic decay We can calculate  NM without theoretical help ! p 16

Theory: ~ Asymmetry parameter of 5 Λ He  NM =0.08± p statistical  contami Nucl.Phys.A754 (2005) 168c nucl-ex/

Asymmetry parameter of 12 C, 11 B   NM = - 0.14± p statistical  contami E160 : - 0.9±0.3 18

Comparison with previous experiment PID function Energy spectrum p  Precious Experiment E508 w/proton w/pion range&E tot dE/dx&E tot TOF&E tot 19

Comparison with recent calculations OPE  +K  +K+DQ OME  +K,OME can reproduce  n /  p ratio but predict large negative  NM  +K+   +K+  +DQ  n /  p and  NM can be reproduced by  +K+  +DQ model Sasaki et al. PRC71 (2005) (1) Large b( 1 S 0 → 3 P 0 ) and f( 3 S 0 → 3 P 1 ) amplitude (2) Violation of ΔI=1/2 rule considered T. Maruta ; parallel A2  a  Calculation by Itonaga 20

Decay Widths → Okada’s poster 21

Summary   N→NN was directly observed for the first time !! 5 Λ He: Γ n / Γ p ratio ~ N nn / N np = 0.45±0.11±0.03 Kang et al. PRL 96 (2006) Λ C: Γ n / Γ p ratio = 0.50±0.13±0.05 Kim et al. PLB641 (2006) 28 ◆ Asymmetry parameter measured with improved accuracy !! 5 Λ He : 11 Λ B and 12 Λ C : Maruta et al. nucl-ex/ ; thesis ◆ Total & partial decay rates are measured very accurately  NM =0.08± p [1] Importance of shorter-range mechanism OPE ⇒ Heavy meson & DQ exchange [2] Suggesting significant contribution from ΛN initial spin-singlet initial state σ-meson exch. / ΔI=1/2 violation? ⇒ 4 Λ H &  NM = - 0.14± p

Spare OHPs

Neutron energy resoltion →  7MeV(FWHM) at 75MeV Neutral PID Constant background very small 1 /  spectra Neutral particles from 12  C Good  n separation Charged particles from 5  He PID function Charged PID Good  p d separation Decay particle identification 8

Coincidence Measurement(E462/E508) Pair numbers/NMWD Estimated contamination from Energy sum distribution n + p n + n

experimentaldata theoreticalcalc. Comparison with theoretical calc. for angular correlation Garbarino’s calc. assuming Gn/Gp = 0.46 (for 5  He ), 0.34 (for 12  C ) considered 2N-induced( ~ 20%), FSI 5  He (E462) 12  C (E508) n+p coincidence n+n coincidence n+p n+n cos  n+p coincidence n+n coincidence n+p n+n p+p Pair number /NMWD /NMWD Pair number /NMWD /NMWD n+p coincidence n+n coincidence p+p coincidence n+p coincidence n+n coincidence p+p coincidence Phys. Rev. Lett. 91 (2003)

Neutron Efficiency Correction

N n / N p Ratio Γ n Γ n (Λ+“ n ”→ n + n ) Γ p Γ p (Λ+“ p ”→ n + p ) If Γ n / Γ p = 1 → N n / N p = 3 If Γ n / Γ p = 0.5→ N n / N p = 2 If Γ n / Γ p = 0→ N n / N p = 1 Naive estimation (without considering FSI and ΛNN→NNN) To avoid suffering from FSI effect & ΛNN→NNN, High energy threshold Γ n :Γ p N n N p 1 : 1 … 3 : 1 1 : 2 … 2 : 1 0 : 1 … 1 : 1 N n / N p = 2×  n /  p + 1

Mass number dependence of neutron energy spectra ( A=5,12,89 ) ( previous experiment ) As the mass number become lager, the number of neutron become lager in the low energy part, and smaller in the high energy part. Q / 2 = 76 MeV No peaking at Q / 2 (76MeV) even 5 Λ He suggested larger contribution of ΛNN→NNN or FSI than theoretical prediction. Theoretical calc. 5 Λ He w/ FSI Q/2

Spare OHPs for asymmetry

E160 E508 Statistical comparison with E C event  246 event 11 B event  393 event 2779 event 2122 event ×11 ×5×5 Total 639 event 4901 event ×8×8 P-coin spectrum

Comparison with E160 PID functionEnergy spectrum

Polarization (P), asymmetry parameter(a) Asymmetry parameter S.Ajimura et al., PLB282, 293 (1992) W(  ) = 1 + A 1 P 1 (cos  ) A 1 = ka 1 P 

KEK-PS E278 experiment Experimental target: 6 Li Observable: Mesonic decay branching ratios Polarization E278 Decay counter  / p separation by dE/dx and E tot

Polarization of 5  He 6 Li(  +, K + ) spectrum S. Ajimura et al., PRL80, 3471 (1998) Consistent with experimental data

Proton asymmetry parameter of 5  He 6 Li(  +, K + ) spectrum S. Ajimura et al., Submitted to PRL Inconsistent with meson exchange model

Polarization of  ー : E462 ー : E278 : Motoba et al. NPA577 (1994) 293c NOTE: Calculation by Motoba et al. considers excited state at E=4.5 MeV

E462   - /   of   He  - branching ratio  0 branching ratio Lifetime Other results  - decay width for 5  He Errors were much improved !!  0 decay width for 5  He and 12  C HYP2003 proceedings Nucl. Phys. A754 (2005)

Null asymmetry test ( ,pX) reaction : Only Strong Interaction Asymmetry = 0 expected Instrumental Asymmetry < 0.3% p or 

np coincidence analysis n p n p  n n p n p Coincidence NMWD np back-to-back event  NM =0.31±0.22 p

One and only(?) solution  + K +  + DQ Sasaki et al. PRC71 (2005)  N NN W S ,K,,K,  b( 1 S 0 → 3 P 0 ) と f( 3 S 0 → 3 P 1 ) amplitude に影響を与える   I = 3/2 が大きく寄与する  今回  n /  p ratio と  NM を高精度で測定したことにより、 こういう反応機構の必要性が認識された。 p

Mijung の OHP から

Before subtraction After subtraction Uniform components subtraction

FSI consideration using pp-pairs r n,p r n,p fraction ratio of the neutron and proton induced channels. f n,p f n,p is reduction factor due to FSI. g n,p g n,p is cross over influx of neutron(proton) from proton(neutron) due to FSI. p,q,q’ p,q,q’ are angular acceptance factor.,,, N np (bb) N nn (bb) N pp (bb) Before FSI correction 4%

Systematic error calculation 1)Intentionally add 2 pp events in -0.8<cos  <-0.7 2) 3)Uniform b.g. level for different angular regions:6.6%

6 Li Hypernuclear mass spectra 6 Li +  + →  6 Li + K +  6 Li →  5 He + p 5  He 6  Li 5 Li 0MeV 8.3MeV 18.3MeV ( P n -1,S  ) ( P n -1,P  ) ( S n -1,S  ) p decay  decay inclusive  coin p coin 5.2×10 4 events 3.2×10 3 events 1.6×10 3 events 

Instrumental Asymmetry ( ,pC) reaction : Only Strong Interaction Asymmetry = 0 expected Instrumental Asymmetry < 0.3%

Spin / isospin dependence p p n Λ n n p Λ p p n n Λ Non-mesonic weak decay of 4  He and 4  H 4 He (K -,  - ) 4  He or 4 He (  +,K + ) 4  He  n+n back-to-back 4 He (K -,  0 ) 4  H  p+n back-to-back (  0 spectrometer ) see S.Ajimura : J-PARC LOI 21 To J-PARC R NS … N :  n  nn,  p  np S : spin = 0 or 1  nm ( 4  H) = ( 3R n1 + R n0 + 2R p0 ) ×  4 / 6  nm ( 4  He) = ( 2R n0 + 3R p1 + R p0 ) ×  4 / 6  nm ( 5  He) = ( 3R n1 + R n0 + 3R p1 + R p0 ) ×  5 / 8  Need one-order higher statistics.  J-PARC

π+π+ K+K+ decay counter K6/SKS setup

Identification of hypernuclear formation K+K+  T1 target Z-vertex Mass Z

Non-mesonic weak decay strong tenser coupling (  L=2,  S=2) → dominant term 3 S 1 → 3 D 1 (amplitude “d”)  + N→ N + N  + p → n + p :  p = a 2 +b 2 +c 2 +d 2 +e 2 +f 2  + n → n + n :  n = a 2 +b 2 +f 2 OPE :  n /  p ~ 0.1 Λ N NN W S π One Pion Exchange (OPE) model  n /  p ratio : The most important observable to study the isospin structure of the NMWD. Exp. :  n /  p ~ 1  n /  p ratio puzzle Simple theoretical model with large error

 -nucleus overlap for 5  He   0 /   = 0.201±0.011 (   He)   nm /   = 0.395±0.016 (   He) Γtotal ( 56 Λ Fe) ~ Γnm(A→∞) ~ 1.2Γ Λ ( E307 ) Γnm ( 5 Λ He) = 0.4Γ Λ ( Present) 1/3 of Λ is inside α Both results are consistent, preferred larger overlap than YNG prediction. 5 Λ He (ORG) ~ 40% 5 Λ He (YNG) ~ 20% 1/3 of Λ is inside α     0 /   locates in between ORG and YNG.

ちょっと前の講演のから..

Mesonic Weak Decay Decay mechanism is known fairly well “How to use it” Mass number 4~54~5 ~ ~ 100 q ~ 400MeV/c ΛN→NN Spin/isospin dep. ΔI=1/2 rule test Mass number dependence Λ→Nπ Λ-nucleus potential Spin/parity assignment Pion distortion effect in nuclei q ~ 100MeV/c Non-Mesonic Weak Decay (NMWD) Decay mechanism is unknown “What is it ?” Fermi momentum ~ 270MeV/c > > 4

History of hypernuclear weak decay experiments… Year ~ ~ ~ Γ π _ Γ π _ (  → p + π - ) Γ π 0 Γ π 0 (  → n + π 0 ) Γ p Γ p (  +“ p ”→ n + p ) Γ n Γ n (  +“ n ”→ n + n ) 1/  HY =Γ tot ΓmΓm Γ nm New era started! → / J-PARC Merit/ Demerit * Clean decay identification → ground state spin assignment * Low energy threshold for p * Hypernuclear formation is not identified * Blind for neutral particles * No timing information * Hypernuclear formation tagged → branching ratio ! * Direct lifetime meas. w/TOF counter * Still hard to see neutral particles * High energy threshold for p (Ep>30 ~ 40MeV) Emulsion and Bubble chamber Method Counter experiment w/ (K,π) SKS experiments w/ (π,K) reaction n+p/n+n coincidence * Heavy Λ hypernuclear production * Neutral particle detection * Asymmetry of p from NMWD * Improved statistics → n+p/n+n double coincidence 7

Hyperon-nucleus potential Λnucleus YN interaction attraction ~ repulsion Repusive core is the common feature of Y-nucleus potential 18

Σ-nucleus potential I=1/2 I=3/2 * Bound state only in I=1/2 * Due to the existence of repulsive core, Σ is pushed outside of the nucleus and ΣN→ΛN conversion is supressed 4 Σ He (I=1/2, S=0) 19

Spin/isospin dependence       8/RR3 R R3 = He 6/RR3 R2 = 6/R2 R R3 = H 50p1p0nn1 5 nm 40p1pn0 4 nm 40p0nn1 4 nm       Test of =1/2 rule p p n Λ n n p Λ p p n n Λ NMWD of 4 Λ He and 4 Λ H × 35

Theoretical approach N N N Λ Direct Quark (DQ) mechanism q ~ 400MeV/c (← large!) → short-distance interaction One Meson Exchange (OME) mechanism Λ N NN π,K,η,ρ,ω,K * → large  n /  p ( ~ ) Kaon exchange model (OME)  dominant term 3 S 1 → 1 P 1 (amplitude “f”) (  range ~ 0.5 fm) 36

only proton Most of the experiments measured only proton energy specra   n /  p = (  nm –  p ) /  p difficulty in detecting neutrons) (because of the difficulty in detecting neutrons) n n n p p p p p n n n p rescattering  NN→NNN (2N-induced process) Λ N N N W π N N Final state interaction (FSI) effect Experimental difficulty Proton energy loss inside a target and detectors Final state interaction (FSI) effect (  not well established theoretically) to distinguish between the FSI and 2N-induced process (  NN  nNN) (One of the theoretical model) 37

Hypernuclear mass spectra on C, Si and Fe target nat C(  +,K + ) nat Si(  +,K + ) nat Fe(  +,K + ) 45

KEK-E307 COSY-13 ? Lifetime of very-heavy hypernuclei ? (J-PARC) (π,K) K1.1BR 49

By-products of E307 exp. 1. Mesonic decay widths of midium-heavy Λ hypernuclei 2. Proron energy spectra → Γn/Γp ratio “puzzle” 50

Enhancement of π-mesonic decay widths Momentum transfer q ~ 100MeV/c << 270MeV/c → “Forbidden” process in nuclear matter 1. Fermi motion of Λ 2. Smaller local Fermi momentum at the surface region 3. Pion distortion effect 1) Pion feels attraction in nuclear medium due to the P-wave part of the optical potential 2) Inside the nucleus, pion can carry smaller energy for fixed momentum q 3) Due to the energy conservation, final nucleon has more chance to come out above the Fermi surface 51

Effects of nuclear shell structure and  -nucleus potential T. Motoba et al. Prog. Theo. Phys. Suppl. No.117, 477 (1994) H. Noumi et al. PRC52, 2936 (1995) J. J. Szymanski et al. PRC43, 849 (1991) A.Sakaguchi et al. PRC43, 73 (1991) T. Motoba et al., PTP Suppl. No.117, 477 (1994) Potential dependence of decay rate  mesonic decay rates for p-shell  hypernuclei 52

Hypernuclear mass spectra on C, Si and Fe target nat C(  +,K + ) nat Si(  +,K + ) nat Fe(  +,K + ) 53

Results of  - Mesonic decay width Branching ratio  - Mesonic decay width Motoba Y.Sato et al. Recently re-submitted to PRC 54

Gross behavior of hypernuclear  -mesonic decay rate E.Oset et al. Prog. Theo. Phys. Suppl. No.117,461 (1994)T. Motoba et al. Nucl. Phys. A547, 115c (1992) 55

Measurement of π0 mesonic decay 33

Only one old experiment…. (stopped K-,π-) Sakaguchi et al. Phys. Rev. C43 (1991 ) Λ C ~ 1000 π 0 branching ratio of 12 Λ C = 0.174±0.057± γcoincidence 2γcoincidence Still large error!! → NMWD branch ?

one gamma ray from “  0  2  ” process was detected. For observing  0 particle, Constant background level is very low. Gated ground state of hypernuclei ( 5  He, 12  C) 1 /  ( TOF ) spectrum Neutral particle identification Layer multiplicity  2 ADC sum  20MeVee Good separation (between  and neutron) 34

Large plastic scintillator arrays were used as  detector. Start timing counter Charged VETO 30cm  detection system  0 identification Background (low energy):  from nuclear decay process 00   EM shower (~70MeV) K+K+ ++  0 emit energetic gamma. (~70MeV)  set threshold of ADC sum. The gamma  cascade in many layers.  select high multiplicity event. To reject the nuclear decay  In these cut conditions, It is hard to estimate gamma detection efficiency.  So we simulated with same conditions using GEANT code. 5  He 35

Mul   2 Mul   3 Mul   4 Mul   5 Mul   6 Layer multiplicity ADC sum distribution Mul   1  efficiency estimation using GEANT simulation * Blue histogram : GEANT simulation * Plot (with error bar) : Experimental data Nuclear  is shown only Mul  1. To remove it completely, we apply Mul  2 and ADCsum  20MeVee. Well agree with Geant simulation. assuming  0 momentum in GEANT simulation as 5  He : MeV (mono) 12  C : Motoba’s calculation PTP117(1994)  from  0 20MeV nuclear  36

 0 branching ratio of 5  He Free  b   / b  0 = 1.78±  He  b   / b  0 = 1.70±0.08 MeV Mass spectra for 6 Li(  +,K + ) 5  He g.s. quasi free w/ gamma Mul   2  20 MeVee inclusive efficiency = 9.59% N (inc) = N (w/  ) = b  0 = N (w/  ) / N (inc) × eff = 0.212±0.008 ADC sum w/ Geant sim 5  He  + p +    + n +  0 Same Q-value as that of free  37

 0 branching ratio of 12  C b  0 = N (w/  ) / N (inc) × eff = 0.133±0.005±0.003 MeV Mass spectra for 12 C(  +,K + ) quasi free w/ gamma 12  C g.s. inclusive Mul   2  20 MeVee efficiency = 9.53% N (inc) = N (w/  ) = ADC sum w/ GEANT sim

Results of   0   He   0 /   = 0.201±0.011   C   0 /   = 0.165±0.008 Lifetime : ps (E462) -10 Lifetime : ps (E508) -6 Much improved accuracy Okada et al., HYP03 nucl-ex/

Fuse-Kumagai’s recent calculation JPS meeting (2004 Spring) 39

0.336 ± 0.016ΓΛ

SG: excluded → Existence of repulsive core!! 40

  He  nm /   = 0.406±0.020   C  nm /   = 0.953±0.032  tot = 0.947±0.038 Γ Λ bπ 0 = bπ 0 = 0.212±0.008 bπ - = bπ - = 0.359±0.009 bπ - = bπ - = 0.099±0.011 bπ 0 = bπ 0 = 0.133±0.005  tot = 1.242±0.042 Γ Λ 0.41± ±0.09 Non-mesonic deca rate 5  He and 12 Λ C Γtotal ( 56 Λ Fe) ~ Γnm(A→∞) ~ 1.2Γ Λ ( E307 ) Γnm ( 5 Λ He) = 0.4Γ Λ ( Present) Γnm calculation must use the Λ w.f. which can well reproduce Γπ 41

Mass number dependence of Γ NM 42