Monotone Deterministic RL-Automata Don’t Need Auxiliary Symbols Supported by grants from DFG and the Grant Agency of the Czech Republic Tomasz Jurdziński.

Slides:



Advertisements
Similar presentations
Chapter 5 Pushdown Automata
Advertisements

Pushdown Automata Section 2.2 CSC 4170 Theory of Computation.
Pushdown Automata Chapter 12. Recognizing Context-Free Languages Two notions of recognition: (1) Say yes or no, just like with FSMs (2) Say yes or no,
YES-NO machines Finite State Automata as language recognizers.
Peter Černo and František Mráz. Introduction Δ -Clearing Restarting Automata: Restricted model of Restarting Automata. In one step (based on a limited.
Pushdown Automata Part II: PDAs and CFG Chapter 12.
Computability and Complexity 14-1 Computability and Complexity Andrei Bulatov Cook’s Theorem.
1 Introduction to Computability Theory Lecture7: PushDown Automata (Part 1) Prof. Amos Israeli.
Courtesy Costas Busch - RPI1 Non Deterministic Automata.
COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material has been reproduced and communicated to you by or on behalf of Monash University.
Lecture 3 Goals: Formal definition of NFA, acceptance of a string by an NFA, computation tree associated with a string. Algorithm to convert an NFA to.
Programming the TM qa  (,q) (,q) q1q1 0q1q1 R q1q1 1q1q1 R q1q1  h  Qa  (,q) (,q) q1q1 0q2q2  q1q1 1q3q3  q1q1  h  q2q2 0q4q4 R q2q2 1q4q4.

Lecture 3 Goals: Formal definition of NFA, acceptance of a string by an NFA, computation tree associated with a string. Algorithm to convert an NFA to.
Automata & Formal Languages, Feodor F. Dragan, Kent State University 1 CHAPTER 5 Reducibility Contents Undecidable Problems from Language Theory.
Fall 2006Costas Busch - RPI1 Non-Deterministic Finite Automata.
CS 3240 – Chuck Allison.  A model of computation  A very simple, manual computer (we draw pictures!)  Our machines: automata  1) Finite automata (“finite-state.
Topics Automata Theory Grammars and Languages Complexities
Costas Busch - LSU1 Non-Deterministic Finite Automata.
1 Non-Deterministic Finite Automata. 2 Alphabet = Nondeterministic Finite Automaton (NFA)
Chapter 9 Turing Machine (TMs).
Finite State Machines Data Structures and Algorithms for Information Processing 1.
LIMITED CONTEXT RESTARTING AUTOMATA AND MCNAUGHTON FAMILIES OF LANGUAGES Friedrich Otto Peter Černo, František Mráz.
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
DIPLOMA THESIS Peter Černo Clearing Restarting Automata Supervised by RNDr. František Mráz, CSc.
::ICS 804:: Theory of Computation - Ibrahim Otieno SCI/ICT Building Rm. G15.
CMPS 3223 Theory of Computation
CS490 Presentation: Automata & Language Theory Thong Lam Ran Shi.
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions.
Pushdown Automata (PDAs)
Context-free Languages Chapter 2. Ambiguity.
Lexical Analysis Constructing a Scanner from Regular Expressions.
Push-down Automata Section 3.3 Fri, Oct 21, 2005.
 2005 SDU Lecture13 Reducibility — A methodology for proving un- decidability.
Deterministic Finite Automata CS 130: Theory of Computation HMU textbook, Chapter 2 (Sec 2.2)
CS 208: Computing Theory Assoc. Prof. Dr. Brahim Hnich Faculty of Computer Sciences Izmir University of Economics.
PushDown Automata. What is a stack? A stack is a Last In First Out data structure where I only have access to the last element inserted in the stack.
1 Turing Machines as Transducers. 2 Turing-computable Functions Function f with domain D is computable if There exists TM M= (Q, D, , , q 0, B, F) Such.
1 Pushdown Automata There are context-free languages that are not regular. Finite automata cannot recognize all context-free languages.
Three Basic Concepts Languages Grammars Automata.
CS 154 Formal Languages and Computability February 4 Class Meeting Department of Computer Science San Jose State University Spring 2016 Instructor: Ron.
1 Section 13.1 Turing Machines A Turing machine (TM) is a simple computer that has an infinite amount of storage in the form of cells on an infinite tape.
1 Turing Machines and Equivalent Models Section 13.1 Turing Machines.
Overview of Previous Lesson(s) Over View  A token is a pair consisting of a token name and an optional attribute value.  A pattern is a description.
Lecture 16b Turing Machines Topics: Closure Properties of Context Free Languages Cocke-Younger-Kasimi Parsing Algorithm June 23, 2015 CSCE 355 Foundations.
Chapter 5 Finite Automata Finite State Automata n Capable of recognizing numerous symbol patterns, the class of regular languages n Suitable for.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen.
Unrestricted Grammars
Pushdown Automata Chapter 12. Recognizing Context-Free Languages Two notions of recognition: (1) Say yes or no, just like with FSMs (2) Say yes or no,
Akram Salah ISSR Basic Concepts Languages Grammar Automata (Automaton)
Theory of Languages and Automata By: Mojtaba Khezrian.
1 Finite Automata. 2 Introductory Example An automaton that accepts all legal Pascal identifiers: Letter Digit Letter or Digit "yes" "no" 2.
Lecture #5 Advanced Computation Theory Finite Automata.
Pushdown Automata - like NFA-  but also has a stack - transition takes the current state, the current input symbol, and the top-of-the-stack symbol (which.
Theory of Computation Pushdown Automata pda Lecture #10.
Non Deterministic Automata
Turing Machines.
Chapter 7 PUSHDOWN AUTOMATA.
Pushdown Automata.
Chapter 2 FINITE AUTOMATA.
REGULAR LANGUAGES AND REGULAR GRAMMARS
Deterministic Finite Automata And Regular Languages Prof. Busch - LSU.
Non-Deterministic Finite Automata
CSE322 Definition and description of finite Automata
Intro to Data Structures
Non Deterministic Automata
CS21 Decidability and Tractability
Decidability and Tractability
Chapter 1 Regular Language
Non Deterministic Automata
Presentation transcript:

Monotone Deterministic RL-Automata Don’t Need Auxiliary Symbols Supported by grants from DFG and the Grant Agency of the Czech Republic Tomasz Jurdziński University of Wrocław Poland Martin Plátek Charles University Prague Czech Republic Friedrich Otto František Mráz Universität Kassel Germany

DLT Palermo Overview zmotivation zrestarting automata ydefinition, subclasses yright-, left- monotonicity zprevious results about (nondeterministic and deterministic) restarting automata with left/right monotonicity zmonotone deterministic two-way restarting automata do not need auxiliary symbols ycharacterization by deterministic transducers and DCFL zconclusions

DLT Palermo Restarting automata - Motivation zmodel for the analysis by reduction ya stepwise simplification of an input sentence while preserving its (non)correctness until a simple sentence is got or an error is found yeach simplification (reduction) means a rewriting a limited part of the sentence by a shorter one zrich taxonomy of constrains for various models of analyzers and parsers zin particular constrains on word-order – applications for free word- order languages (many Slavonic languages)

DLT Palermo Motivation z(right) monotonicty yduring a computation, places of rewriting do not increase their distance from the right end of the word ycharacterizations of CFL (by nondeterministic) and DCFL (by deterministic) one- way restarting automata zleft monotonicty yduring a computation, places of rewriting do not increase their distance from the left end of the word ynondeterministic left-monotone restarting automata – similar power as right- monotone ones ydeterministic left-monotone restarting automata – different

DLT Palermo b a b b a a b a a b b a b Restarting automaton finite set of states c $ q control unit scanning window input word |

DLT Palermo Operations zMVR - move right zMVL - move left  rewrite by v zRESTART zACCEPT v the initial state q0q0

DLT Palermo Instructions (1) ( p, u )  ( q,MVR ) (3) ( p, u )  RESTART (5) ( p, u )  ( q, v ) k input alphabet working alphabet Two alphabets c... | u $ p (2) ( p, u )  ( q,MVL ) (4) ( p, u )  ACCEPT !!! | v |<| u | !!!

ACCEPT Accepting configuration c | $ Initial configuration c | $ input word q0q0 the initial state input symbols only Restarting configuration $ current word q0q0 the initial state working symbols allowed c | If there is no applicable instruction, the automaton rejects

DLT Palermo cycle –part of a computation between two restarting configurations contains exactly one rewriting tail – part of a computation between a restarting configuration and a halting configuration Cycles W1W1 W2W2 W3W3 W n-1  c| c| c| c| $ $ $ $ WnWn c|$ cycles tail

DLT Palermo Subclasses of restarting automata RLWW RRWWRWW RLWRRWRWRW RLRRR no MVL restart immediately after each rewrite deleting only no working symbols back

DLT Palermo  (right-)mon-RLWW -automaton – all its computations starting on an input word are (right) monotone monotonicity ( right -monotonicity ) zright monotone computation – the places of rewriting in cycles do not increase their distance to the right sentinel c | $ c | $  c | $ c | $ c | $ tail not considered initial configuration c | $

DLT Palermo left -monotonicity zleft-monotone computation – the places of rewriting in cycles do not increase their distance from the left sentinel  left-mon-RLWW -automaton – all its computations starting on an input word are left-monotone c | $ c | $  c | $ c | $ c | $ tail not considered initial configuration c | $

DLT Palermo Known results for nondeterministic restarting automata RLWWRRWWRWW RLWRRWRW RLRRR CFL nondeterministic right-mon- RLWWRRWWRWW RLWRRWRW RLRRR nondeterministic left-mon CFL X Y equivalence L (X ) = L (Y ) X Y proper inclusion L (X )  L (Y )

DLT Palermo Known results for deterministic restarting automata L={ a n b n c, a n b 2n d | n  0 } L  L ( det-mon-RL ) \ DCFL L  L ( det-left-mon-RL ) \ L ( det-RRW ) deterministic (right-) mon- RLWWRRWWRWW RLWRRWRW RLRRR DCFL deterministic left-mon- RLWWRRWWRWW RLWRRWRW RLRRR  DCFL R

DLT Palermo Mirror Symmetry Lemma: For each X  {, W, WW }: L ( det-left-mon- RLX ) = [ L ( det-mon- RLX ) ] R deterministic right-mon- RLWWRRWWRWW RLWRRWRW RLRRR DCFL deterministic left-mon- RLWWRRWWRWW RLWRRWRW RLRRR  DCFL R

DLT Palermo The main theorem a) L ( det-mon- RLWW ) = L ( det-mon- RLW ) = L ( det-mon- RL ) b) L ( det-left-mon- RLWW ) = L ( det-left-mon- RLW ) = L ( det-left-mon- RL ) L ( det-left-mon- RRWW ) =

DLT Palermo q0q0 ( q 0, caa )  ( q 1, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$bc | aabb

DLT Palermo q1q1 ( q 1, aaa )  ( q 2, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$bc | aabb q0q0

DLT Palermo q2q2 ( q 2, aaa )  ( q 3, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$bc | aabb q0q0 q1q1

DLT Palermo q3q3 ( q 3, aaa )  ( q 4, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$bc | aabb q0q0 q1q1 q2q2

DLT Palermo q4q4 ( q 4, aab )  ( q 5, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$bc | aabb q0q0 q1q1 q2q2 q3q3

DLT Palermo q5q5 ( q 5, abb )  ( q 6, b )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$bc | aabb q0q0 q1q1 q2q2 q3q3 q4q4

DLT Palermo c q6q6 ( q 6, bbb )  ( q 7, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) aabba$b | ab q0q0 q1q1 q2q2 q3q3 q4q4 q5q5

DLT Palermo q7q7 ( q 7, bb$ )  ( q 8, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6 caabba$b | ab

DLT Palermo q8q8 ( q 8, b$ )  ( q 9, MVR )  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6 caabba$b | ab q7q7

DLT Palermo q9q9 ( q 9, $ )  RESTART  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Characterization of L ( det-left-mon-RRWW ) q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6 caabba$b | ab q7q7 q8q8

DLT Palermo q9q9 ( q 9, $ )  RESTART  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Trace q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6 caabba$b | ab q7q7 q8q8  q5q5 q5q5 trace

DLT Palermo  W.l.o.g. an RRWW-automaton M scans whole tape before it restarts / accepts / rejects Computing the trace q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6 caabba$b | ab  q5q5 q5q5 aabbabaabb

DLT Palermo Computing the trace q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6  q5q5 q5q5 aabbabaabb aabba$bc | aabb q2q2 deterministic transducer G M w =w = GM (w) =GM (w) = G M (L) = { G M (w) | w  L } Proposition: For each det-left-mon-RRWW -automaton M : G M (L(M))  DCFL R

DLT Palermo Characterization of L ( det-left-mon-RRWW ) zProposition: For each det-left-mon-RRWW -automaton M : G M (L(M))  DCFL R. Idea: knowing the trace, a deterministic RRWW-automaton could accept L(M) working from right to left c | $ c | $  c | $ c | $ c | $ c | $  $ $  $ $ $  | c | c | c | c || | c | c | c | c || | c | c | c | c || | c | c | c | c || | c | c | c | c || | c | c | c | c || $ $

DLT Palermo Known results for deterministic restarting automata deterministic right-mon- RLWWRRWWRWW RLWRRWRW RLRRR DCFL deterministic left-mon- RLWWRRWWRWW RLWRRWRW RLRRR  DCFL R

DLT Palermo Proposition: Let G be a deterministic transducer with input alphabet , and let L   +. If G (L) R  DCFL, then there exists a det-left- mon-RL-automaton M that accepts the language L. Idea:  replace G by a deterministic transducer G ’  G ’ outputs one symbol for each letter read, and  G ’ (L) R  DCFL  it is possible to “compute” G ’ ( w ) from w “on-the-fly” by a two-way finite state automaton A ; let q i be the state of G ’ when it is scanning w [ i ] ; knowing q i the automaton A can compute  q i+1 - obvious  q i-1 - [Hopcroft, Ullman 1967] Characterization of L ( det-left-mon-RRWW )

DLT Palermo  [ G ’ (L) ] R  DCFL, i.e. [ G ’ (L) ] R can be accepted by a det-mon-R- automaton M 1  a det-left-mon-RL-automaton M 2 can accept G ’ (L) by simulating M 1  first scans x  G ’ (L) from left to right and checks whether x could be output of G ’  then simulates M 1 moving from right to left  a det-left-mon-RL-automaton M 3 can accept L by simulating M 2 using A to compute G ’ (L) Characterization of L ( det-left-mon-RRWW )

DLT Palermo Conclusions zfor deterministic two-way restarting automata which are right or left monotone we do not need auxiliary symbols, we do not need to rewrite symbols, deleting is enough deterministic right-mon- RLWWRRWWRWW RLWRRWRW RLRRR DCFL deterministic left-mon- RLWWRRWWRWW RLWRRWRW RLRRR  DCFL R

DLT Palermo LFLF Conclusions zFor modelling the analysis by reduction in the case of left/right monotone rewritings only we need not auxiliary symbols - it is possible to reduce a given sentence to a ‘simple’ form within the same language zthe main result carries over to det-right-left-mononotone two-way restarting automata, but it was shown by a pumping techniques LFLF L ( R )L ( R ) L ( R )L ( R )