CSC 508, Software Engineering I 1 CSC 508 Software Engineering I Fall Quarter, 2004 Clark S. Turner, J.D., Ph.D.

Slides:



Advertisements
Similar presentations
Software Quality Assurance Plan
Advertisements

Lecture # 2 : Process Models
Object-Oriented Software Development CS 3331 Fall 2009.
The design process IACT 403 IACT 931 CSCI 324 Human Computer Interface Lecturer:Gene Awyzio Room:3.117 Phone:
SEP1 - 1 Introduction to Software Engineering Processes SWENET SEP1 Module Developed with support from the National Science Foundation.
Software Process Models
© Devon M.Simmonds, 2007 CSC 550 Graduate Course in Software Engineering ______________________ Devon M. Simmonds Computer Science Department University.
Introduction to Software Engineering Lecture 4 André van der Hoek.
Software Quality Metrics
R R R CSE870: Advanced Software Engineering (Cheng): Intro to Software Engineering1 Advanced Software Engineering Dr. Cheng Overview of Software Engineering.
CSC 205, Software Engineering I 1 CSC 205 Software Engineering I Spring Quarter, 2000 Clark S. Turner, J.D., Ph.D.
CSC x402, Requirements Engineering 1 CSC 402 Requirements Engineering Fall Quarter, 2002 Clark S. Turner, J.D., Ph.D.
Chapter 2 Succeeding as a Systems Analyst
Software Engineering General Project Management Software Requirements
CS350/550 Software Engineering Lecture 1. Class Work The main part of the class is a practical software engineering project, in teams of 3-5 people There.
CSC x402, Requirements Engineering 1 CSC x402 Requirements Engineering Fall Quarter, 2000 Clark S. Turner, J.D., Ph.D.
CSC 509, Software Engineering II 1 CSC 509 Software Engineering II Winter Quarter, 2005 Clark S. Turner.
Course Introduction and Overview of Software Engineering Richard N. Taylor ICS 221 Fall 2002.
Xtreme Programming. Software Life Cycle The activities that take place between the time software program is first conceived and the time it is finally.
9 1 Chapter 9 Database Design Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel.
CSC 402, Requirements Engineering 1 CSC 402 Requirements Engineering Fall Quarter, 2005 Clark S. Turner.
The Software Product Life Cycle. Views of the Software Product Life Cycle  Management  Software engineering  Engineering design  Architectural design.
Software Process and Product Metrics
ABET’s coming to Rose! Your involvement Monday, Nov 5, 2012.
Chapter 2 The process Process, Methods, and Tools
ICS 52: Introduction to Software Engineering Lecture Notes for Summer Quarter, 2003 Michele Rousseau Topic 3 Partially based on lecture notes written by.
المحاضرة الثالثة. Software Requirements Topics covered Functional and non-functional requirements User requirements System requirements Interface specification.
College of Engineering and Computer Science Computer Science Department CSC 131 Computer Software Engineering Fall 2006 Lecture # 1 (Ch. 1, 2, & 3)
CSE 303 – Software Design and Architecture
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
SOFTWARE ENGINEERING1 Introduction. Software Software (IEEE): collection of programs, procedures, rules, and associated documentation and data SOFTWARE.
Understand Application Lifecycle Management
CS 360 Lecture 3.  The software process is a structured set of activities required to develop a software system.  Fundamental Assumption:  Good software.
ITEC 3220M Using and Designing Database Systems
©Ian Sommerville 2000, Mejia-Alvarez 2009 Slide 1 Software Processes l Coherent sets of activities for specifying, designing, implementing and testing.
Introduction to Software Engineering LECTURE 2 By Umm-e-Laila 1Compiled by: Umm-e-Laila.
Software Software is omnipresent in the lives of billions of human beings. Software is an important component of the emerging knowledge based service.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1 Software Processes (Chapter 3)
Software Requirements Engineering CSE 305 Lecture-2.
Software Engineering Management Lecture 1 The Software Process.
Software Engineering Principles Principles form the basis of methods, techniques, methodologies and tools Principles form the basis of methods, techniques,
1 Introduction to Software Engineering Lecture 1.
Historical Aspects Origin of software engineering –NATO study group coined the term in 1967 Software crisis –Low quality, schedule delay, and cost overrun.
Software Engineering Principles. SE Principles Principles are statements describing desirable properties of the product and process.
Cmpe 589 Spring 2006 Lecture 2. Software Engineering Definition –A strategy for producing high quality software.
Software Design Process
Systems Development Life Cycle
Software Maintenance Speaker: Jerry Gao Ph.D. San Jose State University URL: Sept., 2001.
CSE 303 – Software Design and Architecture
Software Engineering Jon Walker. What is Software Engineering? Why do we call it Software Engineering? Why not just call it programming or software development?
Advanced Software Engineering Lecture 4: Process & Project Metrics.
Process Asad Ur Rehman Chief Technology Officer Feditec Enterprise.
Software Engineering (CSI 321) Software Process: A Generic View 1.
Software Development Process CS 360 Lecture 3. Software Process The software process is a structured set of activities required to develop a software.
Lectures 2 & 3: Software Process Models Neelam Gupta.
Object-Oriented and Classical Software Engineering Eighth Edition, WCB/McGraw-Hill Stephen R. Schach 1.
Ch. 31 Software Engineering Principles CSC 3910 Software Engineering Time: 1:30 to 2:20Meeting Days: MWFLocation: Oxendine 1256 Textbook: Fundamentals.
Introduction to Software Engineering 1. Software Engineering Failures – Complexity – Change 2. What is Software Engineering? – Using engineering approaches.
© Chinese University, CSE Dept. Software Engineering / Topic 3: Software Engineering Principles Your Name: _____________________ Computer Science.
Course Overview Stephen M. Thebaut, Ph.D. University of Florida Software Engineering.
Advanced Software Engineering Dr. Cheng
Software Engineering Management
Lecture 3 Prescriptive Process Models
The Development Process of Web Applications
Object-Oriented Software Engineering Using UML, Patterns, and Java,
The Systems Engineering Context
Chapter 5 Designing the Architecture Shari L. Pfleeger Joanne M. Atlee
Chapter 2 – Software Processes
Software Engineering Software Engineering is the science and art of
Software Engineering Software Engineering is the science and art of
Presentation transcript:

CSC 508, Software Engineering I 1 CSC 508 Software Engineering I Fall Quarter, 2004 Clark S. Turner, J.D., Ph.D.

CSC 508, Software Engineering I 2 Administration Instructor – Clark S. Turner Required Books – Jackson, Software Requirements and Specifications – Petroski, To Engineer is Human – Simon, The Sciences of the Artificial Recommended: – Wiegers, Requirements Recommended writing refs – Strunk&White, The Elements of Style – Turabian, A Manual for Writers Office: – phone (805) – Hours (tentative): ¤ Monday, 12: pm ¤ Tuesday, 11: pm Prerequisites – 205, permission of instructor, graduate standing Course website at: –

CSC 508, Software Engineering I 3 Basic Course Requirements Attendance (really!) Readings and serious participation in discussion of readings Presentations (you are expected to volunteer) to class Reporter duty to the class (abstract class progress each week) Personal journal - recommended Near publishable quality research paper (see writing refs) – 40 pages recommended – proper use of sources to develop arguments – significant bibliography – topic in software engineering (broadly interpreted) ¤ chosen, proposed by you ¤ double dipping is fine with me ¤ collaboration is fine with me, but clear credit must be given to collaborators

CSC 508, Software Engineering I 4 Introductions Who am I Who are you Seating chart, help me to know you

CSC 508, Software Engineering I 5 The Basic Definition of our Work Software Engineering is... – the study of software process, software development principles, methods and tools ¤ requirements elicitation and analysis ¤ requirements and design notations ¤ implementation strategies ¤ testing methods ¤ maintenance techniques ¤ management strategies – the production of quality software, delivered on-time, within budget, and satisfying users’ needs Find other definitions of “software engineering”

CSC 508, Software Engineering I 6 The problem and the response... Software is typically – late – over budget – faulty – hence... the “software crisis” ¤ go see the “Chaos Report” referenced on the website! Software Engineering – software production should use established engineering principles – history: coined in 1967 and endorsed by a NATO conference in 1968 – Dr. Dana asks, “why did they call it engineering?” ¤ he worries about the baggage that term carries ¤ why not “development”?

CSC 508, Software Engineering I 7 What type of software? Small single-developer projects can typically get by without Software Engineering – typically no deadlines, small budget (freeware), not safety-critical Software Engineering is required for – large projects (100,000 lines of code and up) – multiple subsystems – teams of developers (often geographically dispersed) – safety-critical systems (software that can kill people...)

CSC 508, Software Engineering I 8 Software Engineering is young Traditional engineering disciplines have been around for hundreds, if not thousands, of years Software Engineering still needs – standard specification and design techniques – formal analysis tools – established processes Currently experimenting in – techniques, notations, metrics, processes, architecture, etc. – some success has been reported ¤ and occasionally overreported (See Watts Humphrey’s work?) – a foundation is being formed...

CSC 508, Software Engineering I 9 What is Engineering? Engineering is – sequence of well-defined, precisely-stated, sound steps, which follow method or apply technique based on some combination of ¤ theoretical results derived from a formal model ¤ empirical adjustments for un-modeled phenomenon ¤ rules of thumb based on experience This definition is independent of purpose... – “engineering” can be applied to many disciplines ¤ however, does software have the formal models, rules of thumb...? Are software “engineers” employees or professionals? – are we independent in our employ? ¤ do we have obligations to society? go look at the Software Engineering Code of Ethics (ref on my website)

CSC 508, Software Engineering I 10 Software Engineers require... a broad range of skills – Mathematics – Computer Science – Economics – Management – Psychology applied to all phases of software production!

CSC 508, Software Engineering I 11 Software economics... Software Production = development + maintenance – maintenance accounts for approximately 67% of the overall costs during the lifecycle of a software product ¤ faster development is not always a good thing may result in software that is difficult to maintain resulting in higher long-term costs ¤ any of you familiar with Xtreme programming or JIT methods?

CSC 508, Software Engineering I 12 Lifecycle Costs ( Schach data from Boehm )

CSC 508, Software Engineering I 13 What was that? Can you interpret the pie chart and explain it? – what should the chart look like? ¤ what do we know about software projects in general? One researcher claims we’ll avoid maintenance costs by buying new software more frequently – we’ll avoid the “rare errors” in the short run ¤ he’s in the safety-critical domain!

CSC 508, Software Engineering I 14 Maintenance Data All products undergo maintenance to account for change... Three major types of maintenance – Perfective (60.5%) ¤ Changes to improve the software product an interesting figure! –why is this so high??? – Adaptive (18 %) ¤ Responding to changes in a product’s environment – Corrective (17.5 %) ¤ Fixing bugs... “Real world” is constantly changing Maintenance is “normal”

CSC 508, Software Engineering I 15 Requirements and Design Aspects User needs and perceptions are difficult (impossible?) to assess – functionality isn’t enough Requirements specification is a contract with the customer Requirements must provide a definitive basis for testing Requirements is about the domain of the problem Design suggests a solution in the software domain Requirements addresses “what?” Design addresses “how?” (See Jackson on “What and How”)

CSC 508, Software Engineering I 16 Verification and validation must permeate the software lifecycle Verification and Validation Aspects The longer a fault exists in software – the more costly it is to detect and correct – the less likely it is to be fixed correctly ¤ e.g. fixing it “breaks” something else! BUT, think about this one! See Beizer, “Software IS Different” QW % of all faults detected in large-scale software products are introduced in its specification and design –data regarding “requirements” defects? Thus...faults should be found early (or prevented!) – requires specification and design V&V – validate first description and verify each phase with respect to previous – evaluate testability and develop test plans at each phase

CSC 508, Software Engineering I 17 Relative cost of fixing a fault

CSC 508, Software Engineering I 18 Team Programming Aspects Reduced hardware costs afford hardware that can run large and complex software systems – products too complex for an individual to develop Most software is produced by a team of software engineers, not an individual – Team programming leads to interface problem between components and communications problems between members – Team programming requires good team organization to avoid excessive communication Team programming introduces communication overhead

CSC 508, Software Engineering I 19 Software Engineering Principles Deal with both process and product (big issues here!) – what is the distinction? Applicable throughout the lifecycle Need abstract descriptions of desirable properties Same principles as other engineering disciplines (Leveson)

CSC 508, Software Engineering I 20 Rigor and Formality Rigor is a necessary complement to creativity – enhances understandability, improves reliability, facilitates assessment, controls cost Formality is the highest degree of rigor Engineering = sequence of well-defined, precisely-stated, sound steps, which follow method or apply technique based on some combination of – theoretical results derived from formal model – empirical adjustments for un-modeled phenomenon – rules of thumb based on experience

CSC 508, Software Engineering I 21 Separation of Concerns Enables mastering of inherent complexity Allows concentration on individual aspects – product features: functions, reliability, efficiency, environment, user interface, etc. – process features: development environment, team organization, scheduling, methods, – economics and management Concerns may be separated by – time (process sequence) – qualities (e.g., correctness vs. performance) – views to be analyzed separately (data vs. control) – components Leads to separation of responsibility

CSC 508, Software Engineering I 22 aspects of modules in isolation overall characteristics of integrated system bottom-up top-down Modularity and Decomposition Complex system divided into modules Modular decomposition allows separation of concerns in two phases Modularity manages complexity, fosters reusability, and enhances understandability – composibility vs. decomposibility – high cohesion and low coupling ¤ for great discussion see Perrow, “Normal Accidents”

CSC 508, Software Engineering I 23 Abstraction Identify important aspects and ignore details – what is the tradeoff? Abstraction depends on the purpose or view Models are abstractions of reality Abstraction permeates software development – from requirements to code – from natural language descriptions to mathematical models – from products to process One specification but many realizations

CSC 508, Software Engineering I 24 Anticipation of Change (cf. XP) Constant change is inevitable in large-scale software systems – software repair & error elimination – evolution of the application – evolution of the social order (business and legal requirements) Identify likely changes and plan for change – software requirements usually not entirely understood – users and environments change – also affects management of software process Maintenance is process of error correction and modification to reflect changing requirements – regression testing with maintenance – configuration management of versions

CSC 508, Software Engineering I 25 Generality Focus on discovering more general problem than the one at hand – fosters potential reuse – facilitates identification of OTS solution Trade-offs between initial costs vs. reuse savings General-purpose, OTS products are general trend in application domains – standard solutions to common problems

CSC 508, Software Engineering I 26 Incrementality Step-wise process with successively closer approximations to desired goal Identify and “deliver” early subsets to gain early feedback – fosters controlled evolution Incremental concentration on required qualities Intermediate deliverables may be prototypes Requires careful configuration management and documentation

CSC 508, Software Engineering I 27 Discussion: Relationships between Principles formality and modularity formality and separation of concerns separation of concerns and modularity modularity and abstraction modularity and anticipation of change anticipation of change and generality abstraction and generality modularity and incrementality anticipation of change and incrementality generality and incrementality

CSC 508, Software Engineering I 28 Sample Software Qualities Correctness Reliability Robustness Performance Usability Testability What do these terms really mean? – what are the relationships between these qualities? – what about safety? Is this a property of software itself? ¤ Is it subsumed under “reliability”??? See Leveson, Safeware

CSC 508, Software Engineering I 29 Uniqueness of Software What are we dealing with? – The stuff doesn’t “wear out” (but does exhibit a bathtub curve …) – The stuff has no “tolerance” - it is binary – The stuff weighs nothing, and you can’t really “see” it. – It is very plastic, we can always “change” it in place ¤ try that with your automobile! Why don’t other engineering principles apply? – For example, statistical reliability methods? ¤ No mean value theorem applies ¤ No accurate user profile or operational distribution – So, when we test, what do we find out about software? ¤ Can’t tell for sure if our software is good or not.

CSC 508, Software Engineering I 30 Definitions! Research (read the shaw paper linked on website!) Requirement Engineering – including the purpose for it! Process – go read Osterweil’s “Software Processes are Software Too” (link on my website) Tools Methods Design Function – distinguish “feature”

CSC 508, Software Engineering I 31 Read for next time Find/buy copy of Simon, The Sciences of the Artificial Read Petroski, To Engineer is Human, this week. Need volunteers to present papers: – Shaw on writing a good paper – Jackson’s “What and How” – Jackson’s “Context Diagrams” – Beizer’s “Software is Different” – Brooks “No Silver Bullet” How did these papers stack up according to Shaw? – (also consider my short note on evaluating papers)

CSC 508, Software Engineering I 32 Class Reporters Need 3 volunteers each week – each take notes on all work presented that week – meet after the week’s classes: ¤ discuss important and weak points ¤ make list of open questions discussed ¤ make list of questions that arise from the whole week of discussions ¤ make list of questions that actually were answered – create a minute presentation for start of following week to analyze the previous week’s work in class ¤ Not a mere summary or abstract ¤ Needs to contain real thought, insights and questions raised ¤ Present a written report (can be paper outline of slide presentation) with names, dates and relevant information to me

CSC 508, Software Engineering I 33 Written Homework Obtain a piece of a software requirements document (or software problem definition) and become familiar with it – you will need to present it, or part of it, to class, next week – you will need to evaluate and analyze it, or part of it, for class – you will review and compare other requirements documents so collected Optional: begin your class Journal in good quality loose-leaf notebook so that you can use dividers if you need to – BEGIN with working definitions, one per page, with room to refine as we go: ¤ Research ¤ Software Engineering ¤ Engineering (find one that emphasizes the social aspects!) ¤ Requirements

CSC 508, Software Engineering I 34 Journal Homework (cont’d) ¤ Tools analytical, software ¤ Process –(go find Osterweil’s “Software Processes are Software Too!” article and look it over at some point.) ¤ Abstraction ¤ Design ¤ Function versus “feature”

CSC 508, Software Engineering I 35 Journal Homework (cont’d) ¤ Constraint ¤ Attribute ¤ Preference ¤ Expectation