1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Lecture 1: A New Beginning References, contacts, etc. Why Study Many Body Physics? Basis for new Devices Complex Emergent Phenomena Describe Experiments.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Superconductivity in Zigzag CuO Chains
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,
B.Spivak with A. Zuyzin Quantum (T=0) superconductor-metal? (insulator?) transitions.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Pavel D. Grigoriev L. D. Landau Institute for Theoretical Physics, Russia Consider very anisotropic metal, such that the interlayer tunneling time of electrons.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Hidden Reentrant and Larkin-Ovchinnikov- Fulde-Ferrell Phase in a Magnetic Filed in (TMTSF) 2 ClO 4 ECRYS (August 17 th 2011) Andrei G. Lebed Department.
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
The Three Hallmarks of Superconductivity
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Fluctuation conductivity of thin films and nanowires near a parallel-
Nonlinear Conductivity in the FISDW states of the Organic Conductor T. Vuletić 1,2, P. Senzier 1, C. Pasquier 1, S. Tomić 2, D. Jérome 1 contact
Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics,
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Electron coherence in the presence of magnetic impurities
How does Superconductivity Work? Thomas A. Maier.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Galvanomagnetic effects in electron- doped superconducting compounds D. S. Petukhov 1, T. B. Charikova 1, G. I. Harus 1, N. G. Shelushinina 1, V. N. Neverov.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Physics Department, Technion, Israel Meni Shay, Ort Braude College, Israel and Physics Department, Technion, Israel Phys. Rev. B.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
B. Spivak, UW S. Kivelson, Stanford 2D electronic phases intermediate between the Fermi liquid and the Wigner crystal (electronic micro-emulsions)
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Igor Lukyanchuk Amiens University
Toward a Holographic Model of d-wave Superconductors
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Search of a Quantum Critical Point in High Tc Superconductors
How might a Fermi surface die?
Presentation transcript:

1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS, Orsay, France) S. Charfi-Kaddour, (LPMC, Tunis, Tunisia ) Field induced confinement in quasi-one dimensional organic conductors S. H., N. Belmechri, S. Charfi-Kaddour and M. Héritier et al. PRB 78, (2008).

2 Low dimensional system are quite interesting New physics: Quantum effects Strong correlations Important effect of disorder FQHE (Nobel prize 1998) Giant magnetoresistance (Nobel prize 2007) Hard disk

3 Needle like Bechgaard salts (TMTSF) 2 X TMTSF X a b c TMTSF=tétraméthyl-tétraséléna-fulvalène X= anion: Br -, PF 6 - ; ClO 4 - …

4 t c « t b « t c  c «  b «  a quasi-1D conductors a b c Organic chains of TMTSF molecules Conducting planes tbtb tata Key parameters of (TMTSF) 2 X tctc Highly anisotropic materials

5 1D LL 3D FL Phase diagram of Bechgaard salts 2D FL? NFL ? Different energy scales 1D ----> 2D 2D ----> 3D

6 2D system 1D system Fermi liquid Confined system 3D system Luttinger liquid The wondrous world of quasi-one organic conductors ( after, W. Kang’s idea)

7 Transport properties: Temperature and field dependent inplane electron-electron scattering rate H b c I a Field induced confinement Field induced confinement: Theoretical approach Quantum calculations: Outline Field induced confinement: a brief review Theory vs. experiments Conclusion and what should be next

8 Field induced confinement: semiclassical picture a b c H a Free of bird flu ! b

9 metal insulator Danner et al Field induced confinement: experiments H b c I a (TMTSF) 2 ClO 4

10 Joo et al metal (TMTSF) 2 ClO 4 insulator Field induced confinement: experiments

11 Lee et al (TMTSF) 2 PF 6 Field induced confinement: experiments

12 Hussey et al Hussey et al Hawthorn et al YBa 2 Cu 4 O 8 La 2-x Sr x CuO 4+  High-Tc superconductors

13 H a b c I FISDW (Behnia et al. PRL 74, 5272 (1995)) H a b c I R xx (arb.units) insulator metal BUT, No localization in R zz Field induced confinement: existing theories Localization scenario magnetic field charge gap Metal-insulator transition Metal-insulator transition expected in BOTH R xx and R zz

14 Field induced confinement: existing theories Semi-classical approaches BUT ! H a b c Danner et al. PRL 78, 983 (1997) Sugawara et al. J. P.S.J. 75, (2006)  electron-electron scattering time depends only on temperature ! I Conductivity in Boltzmann theory Explains the minima in R zz Magnetic energy

15 Saturation behavior of R zz as a function of the magnetic field Semi-classical approaches cannot explain… Lee et al saturation (TMTSF) 2 PF 6 Semi-classical results

16 Hussey et al Change of R zz field dependence from B 2 to a linear behavior Semi-classical approaches cannot explain…  zz is independent of field orientation in the conducting plane (except for range around a axis) T=1.5 K H=14 T Kang et al (TMTSF) 2 ClO 4

17 Quantum models for field induced confinement Index layer Probability in transverse direction Lebed, PRL (2005) But, does not explain the temperature and field resistance behavior !

18 Our proposed model: The electron-electron inplane scattering time  depends on Green function method Quantum mechanical approach: temperature and magnetic field ! Field induced confinement: theoretical approach c H

19 3 D system Coherent interplane hopping 2 D system Incoherent interplane tunneling Field induced confinement Inplane electron scattering  =1/  should increase with magnetic field electron c H

20 Lebed, PRL 1989 ∞ Field independent scattering rate !!! BUT No cutoff limit

21  c : magnetic energy Temperature T, magnetic energy  c and the interplane hopping t c Three competing energy scales: Temperature dependent cutoff E d (T) (different energy scales of the phase diagram)

22 Low temperature (T<t c ) Intermediate temperature (T~t c ) high temperature (T> t c ) Saturation at high temperature Fermi liquid behavior FL? NFL?

23 Low Temperature, three regimes for the field dependent behavior of the scattering rate: low field: slow increase with increasing field H 1 < H< H2 : large enhancement H > H 2 : the increase is slowed down Scattering rate (arb. units) H1H1 H2H2 H2H2 3D-2D crossover (  c > tc) 2D 3D c 3D-2D 2D

24 Green function

25 Green function z c

26 Conductivities aa H b c I a cc H b c I a

27 Experiment H b c I Our model Transverse resistivity (Danner et al. 1997)S. H., N. Belmechri, S. Charfi-Kaddour and M. Héritier PRB 78, (2008) (TMTSF) 2 ClO 4 a

28 Transverse magnetoresistance Experiments (Cooper et al. 86’, Korin-Hamzi ć 03) R zz (H)-R zz (0) / R zz (0) Positive magnetoresistance (TMTSF) 2 ClO 4

29 Saturation of the transverse resistivity at low temperature Danner et al Our model semi-classical model T=1.5 K H=14 T Kang et al (TMTSF) 2 ClO 4

30 H b c I a R xx (arb.units) No field induced confinement along the a axis S. Haddad et al. PRB 78, (2008) (TMTSF) 2 ClO 4 Behnia et al. 1997)

31 Concluding remarks H b c I a Transport properties of layered conductors in the presence of H// b can be understood within The field induced confinement scenario Field dependent inplane scattering rate

32 If the inplane scattering rate is field independent  (T)… No field induced confinement even at H= 9T ! Experiment (TMTSF) 2 ClO 4 !? Inplane scattering rate should depend on the magnetic field !

33 What should be next ? Effect of the field induced confinement on  the angle dependence of the magnetoresistance (Kang et al. PRL 2007)  the critical fields of the superconducting phase (Shinagawa et al. PRL 2007) H b c a  T=1.5 K H=14 T Kang et al (TMTSF) 2 ClO 4

34 What should be next ?  Field induced confinement in other compounds: cuprates,  phase of organic conductors References N. Matsunaga et al. J. Low Temp. Phys. 117, 1735 (1999) A.J. Greer et al. Physica C 400, 59 (2003) N. Joo et al., cond-mat/ S. K. McKernan et al., P.R.L 75, 1630 (1995) O. H. Chung et al., P.R.B 61, (2000) J. Moser, Ph. D. thesis, Orsay (France) (1999) (unpublished) C. Bourbonnais and L. G. Caron, Int. J. Mod. Phys. B, 5, 1033 (1991) J. Kishine and K. Yonemitsu, J. Phys. Soc. Jpn. 67, 1714 (1998) T. Osada et al. P.R.L. 77, 5261 (1996) S. Uji et al., P.R.B 53, (1996) H. Yoshino et al., Synth. Met , 55 (2003) H. I. Ha et al., cond-mat/ A.G. Lebed et al., P.R.L. 93, (2004) A.G. Lebed and P. Bak, P.R.B 40, R11433 (1989) T. Osada et al., P.R.L. 69, 1117 (1992) S. Haddad et al., P.R.B 72, (2005) Strong anisotropy : a=7.354Å, c=67.997Å ? Results of Papavassiliou, Murata and Brooks groups

35 Acknowledgments D. Jérome, C. Pasquier, N. Joo, T. Osada, Y. Suzumura, B. Korin-Hamzi ć and W. Kang French-Tunisian CMCU project 04/G1307