Release of Sugars for Fermentation to Ethanol by Enzymatic Digestion of Corn Stover Pretreated by Leading Technologies Charles E. Wyman, Dartmouth College/University.

Slides:



Advertisements
Similar presentations
BIOENERGY.
Advertisements

DOE – Products Platform Stage Gate Review Meeting August, 2005 Note: Each presentation is allotted 30 minutes; 20 min. for the presentation and 10 min.
Office of the Biomass Program Traci Leath U.S. Department of Energy Atlanta Regional Office Southern Bio-Products Conference Biloxi, MS March 4 th, 2004.
1 9/21/2010 Iman Rusmana Department of Biology Bogor Agricultural University What is Ethanol? Ethanol Production From Biomass Ethanol Production From Grains.
R. Shanthini 06 Feb 2010 Ethanol as an alternative source of energy Bioethanol is produced from plants that harness the power of the sun to convert water.
Improve Xylose Utilization 1.The significance of improving xylose utilization: The commercialization of second-generation bioethanol has not been realized.
Enzymatic Hydrolysis of Poplar Pretreated by Ammonia Fiber Explosion James F. Heidenreich, Tamika Bradshaw, Bruce E. Dale and Venkatesh Balan BCRL, Department.
Rosemary Dobson University of Stellenbosch
Presentation for the Louisiana State University Alternative Energy Conference March 3, 2005 Developing Biorefineries to Produce Energy, Ethanol and Other.
Enzymatic Production of Xylooligosaccharides from Corn Stover and Corn Cobs Treated with Aqueous Ammonia Yongming Zhu1, Tae Hyun Kim2, Y. Y. Lee1, Rongfu.
Biomass Refining CAFI Auburn University Soaking in Aqueous Ammonia (SAA) for Pretreatment of Corn Stover Tae Hyun Kim and Y. Y. Lee Department of Chemical.
Lime Pretreatment of Poplar wood Chemical Engineering Department Texas A&M University.
Hema Rughoonundun Research Week Outline of Presentation The MixAlco Process Introduction Sludge Materials and Methods Results Fermentation of sludge.
Enzymatic Hydrolysis of Cellulose and Hemicellulose in Solids Prepared by Leading Pretreatment Technologies Charles E. Wyman, Dartmouth College Y. Y. Lee,
Richard T. Elander, National Renewable Energy Laboratory
CAFI 2 Project Update NREL and Neoterics Int’l. Rick Elander and Tim Eggeman March 16, 2006.
Characteristics of Biomass Pretreatments Studied by the CAFI Bruce E. Dale, Richard T. Elander, Mark T. Holtzapple, Michael R. Ladisch, Yoon Y. Lee and.
Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn University
Pretreatment Fundamentals Bruce E. Dale, Richard T. Elander, Mark T. Holtzapple, Rajeev Kumar, Michael R. Ladisch, Yoon Y. Lee, Nate Mosier, Jack Saddler,
Enzymatic Digestion of Corn Stover and Poplar Wood after Pretreatment by Leading Technologies Charles E. Wyman, Dartmouth College/University of California.
Ammonia Fiber Explosion (AFEX) for Pretreatment of Corn Stover: Recent Research Results Farzaneh Teymouri, Hasan Alizadeh, Lizbeth Laureano-Perez and Bruce.
1 NREL Update—CAFI 2 Teleconference Rick Elander National Renewable Energy Laboratory National Bioenergy Center Golden, CO February 18, 2004 Biomass Refining.
Consortium for Biomass Refining Based on Leading Pretreatment Technologies Charles E. Wyman, Dartmouth College/University of California Bruce E. Dale,
Abstract NaOH and its derivatives are used as pulping reagents, wherein the spent NaOH is recovered in salt form and reused. In this study, low concentration.
Maximum Total Time for Talk = 25 minutes. Comparative Sugar Recovery Data from Application of Leading Pretreatment Technologies to Corn Stover and Poplar.
Ethanol Production. Feedstock 1.Biomass 2.Starch.
Initial Comparative Process Economics of Leading Pretreatment Technologies Richard T. Elander, National Renewable Energy Laboratory Charles E. Wyman, Dartmouth.
Slide 1 Apollo Program for Biomass Liquids What Will it Take? Michael R. Ladisch Laboratory of Renewable Resources Engineering Agricultural and Biological.
Comparative Data for Enzymatic Digestion of Corn Stover and Poplar Wood after Pretreatment by Leading Technologies Charles E. Wyman, Dartmouth College/University.
Modeling Biomass Conversion to Transportation Fuels Jacob Miller Advisor: Dr. Eric Larson.
Effects of Fluid Velocity on Solubilization of Total Mass, Xylan and Lignin for Hot Water Only and 0.05wt% Sulfuric acid Pretreatment of Corn Stover Thayer.
Making Biorefineries Competitive: PRO.E.SA TM The only sugar platform available today Guido Ghisolfi June 8, 2012.
Food, Feedstocks and Ethanol Production Michael H. Penner Oregon State University Ethanol Workshop Series: Oregon May 8, 2001.
Optimization of Controlled pH Liquid Hot Water Pretreatment of Corn Fiber and Stover Nathan Mosier, Rick Hendrickson, Youngmi Kim, Meijuan Zeng, Bruce.
Integration of Leading Biomass Pretreatment Technologies with Enzymatic Digestion and Hydrolyzate Fermentation DOE OBP Pretreatment Core R&D Gate Review.
ERT Biofuel BIO ETHANOL What, Why, How, How much, ….
Optimal Conditions for Batch Tube Pretreatment Hot water only, 210 o C, 6 min -Total xylose yield is 52.1% % xylose and 106% glucose overall mass.
National Renewable Energy Laboratory Overall Energy Balance for the Corn Stover to Ethanol Process Brianna G. Atherton, Mark F. Ruth, John L. Jechura,
Pretreatment of Lignocellulosic Biomass: Update on Biomass Refining CAFI Studies Charles E. Wyman, Dartmouth College, Session Chair Tim Eggeman, Neoterics.
Economics CAFI II Stage Gate Review Denver, CO May 1, 2007 Tim Eggeman* - Neoterics International Richard Elander - National Renewable Energy Laboratory.
1 Comparison of Selected Results for Application of Leading Pretreatment Technologies to Corn Stover Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn.
A Comparison of Batch, Stop- Flow-Stop, and Flowthrough Pretreatments of Corn Stover Chaogang Liu, Charles E. Wyman Thayer School of Engineering Dartmouth.
A UBURN U NIVERSITY Pretreatment and Fractionation of Corn Stover with Aqueous Ammonia Tae Hyun Kim †, Changshin Sunwoo* and Y.Y. Lee † † Department of.
1 NREL/Neoterics Update—CAFI 2 Teleconference Rick Elander National Renewable Energy Laboratory National Bioenergy Center Golden, CO Tim Eggeman Neoterics.
Logistical Support and Modeling Efforts in Pretreatment Research Paper 516g Annual Meeting of the American Institute of Chemical Engineers Thursday, November.
1 AFEX Treatment on Poplar and Hydrolysis Balan Venkatesh, Shishir Chundawat and Bruce E. Dale BCRL, Michigan State University (
Comparison of Selected Results for Application of Leading Pretreatment Technologies to Corn Stover Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn.
Biomass Refining CAFI Overall Sugar Yields from Corn Stover via Thermochemical Hemicellulose Hydrolysis Followed by Enzymatic Hydrolysis Todd A. Lloyd.
2005 OBP Biennial Peer Review Selective Harvest Kevin L. Kenney, Christopher T. Wright Biomass Feedstock Interface Platform November 14, 2005.
1 Auburn UniversityBiomass Refining CAFI Corn stover Wood chip Bagasse Rice straw Sawdust Biomass Ethanol Fuel.
S-1007 Multi-State Research Committee
Ethanol as an alternative source of energy Bioethanol is produced from plants that harness the power of the sun to convert water and CO 2 to sugars (photosynthesis),
Opportunities for Integration of Forest By-products with Conventional Industry Siddharth Jain, Maryam Akbari, Amit Kumar * Department of Mechanical Engineering,
Covering Key Aspects  Technical  Environmental  Economic August 8, 2008 EthanolRecycle PaperRecycle.
ITACONIC ACID PRODUCTION FROM SORGHUM BRAN – A BIOREFINING APPROACH
Industrial Chemicals from Biorenewables Brent Shanks Chemical & Biological Engineering Department Iowa State University.
Biorefinery for Biofuel Production
Topic : Bio-Ethanol Advisor : Prof. Jo-Shu Chang NURHAYATI / 林海亞 N PAPER REVIEW.
Created By: Alyssa Hughes. The Implementation of Organosolv Pretreatment Team Members: Shuai Tan, Kelsey Thrush, Alyssa Hughes, Neil Neuberger.
Mass Balance of ARP/SSF Biomass Ammonia recycling Fermentation ARP Reactor Soluble sugar Ammonia Washing 100 lb (dry basis) G:36.1 lb X: 21.4 lb O: 7.8.
Phalaris aquatica L. lignocellulosic biomass as second generation bioethanol feedstock I. Pappas, Z. Koukoura, C. Kyparissides, Ch. Goulas and Ch. Tananaki.
Evaluation of a Flowthrough Reactor for Corn Stover Pretreatment Chaogang Liu, Charles E. Wyman Thayer School of Engineering Dartmouth College Hanover,
Hot Water Extraction of Woodchips and Utilization of the Residual Chips and Wood Extracts Date 2/2/2011 Biomass Program IBR Platform – DEFG607G Thomas.
Abdullah Al Aqeel, Cami Andrie Andy Marushack, Kevin Schilling Justin Wilde.
Cellulosic Ethanol Snoop Loops Addison, Kane, Samantha.
FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FEEDSTOCKS
Nassim NADERI MS Food Biotechnology Research Assistant
Low-Moisture Anhydrous Ammonia (LMAA) Pretreatment of Corn Stover
DuPont Biofuels: Building a Sustainable Future
John Nowatzki NDSU Extension Service
Presentation transcript:

Release of Sugars for Fermentation to Ethanol by Enzymatic Digestion of Corn Stover Pretreated by Leading Technologies Charles E. Wyman, Dartmouth College/University of California Bruce E. Dale, Michigan State University Richard T. Elander, National Renewable Energy Laboratory Mark T. Holtzapple, Texas A&M University Michael R. Ladisch, Purdue University Y. Y. Lee, Auburn University Mohammed Moniruzzaman, Genencor International John N. Saddler, University of British Columbia International Symposium on Alcohol Fuels San Diego, California September 26, 2005 Biomass Refining CAFI

Presentation Outline Project background Biomass Refining CAFI Enzymatic hydrolysis results from USDA IFAFS funded project Initial results for recently begun DOE OBP funded project Observations Biomass Refining CAFI

Pretreatment Needs Dilute acid pretreatment is often favored based on more extensive development Many other options have been studied, but only a few are promising Pretreatment is most expensive single operation Difficult to compare leading pretreatments based on data available Limited knowledge of pretreatment mechanisms slows commercial use of all options Biomass Refining CAFI

Biomass Refining Consortium for Applied Fundamentals and Innovation organized in late 1999 Included top researchers in biomass hydrolysis from Auburn, Dartmouth, Michigan State, Purdue, NREL, Texas A&M, UBC, U. Sherbrooke Mission: Develop information and a fundamental understanding of biomass hydrolysis that will facilitate commercialization, Accelerate the development of next generation technologies that dramatically reduce the cost of sugars from cellulosic biomass Train future engineers, scientists, and managers. Biomass Refining CAFI Project Background: CAFI

Developing data on leading pretreatments using: –Common feedstocks –Shared enzymes –Identical analytical methods –The same material and energy balance methods –The same costing methods Goal is to provide information that helps industry select technologies for their applications Also seek to understand mechanisms that influence performance and differentiate pretreatments –Provide technology base to facilitate commercial use –Identify promising paths to advance pretreatment technologies Biomass Refining CAFI CAFI Approach

Hydrolysis Stages Biomass Refining CAFI Stage 2 Enzymatic hydrolysis Dissolved sugars, oligomers Solids: cellulose, hemicellulose, lignin Chemicals Biomass Stage 1 Pretreatment Dissolved sugars, oligomers, lignin Residual solids: cellulose, hemicellulose, lignin Cellulase enzyme Stage 3 Sugar fermentation

Mass Balance Approach: AFEX Example Hydrolysis Enzyme (15 FPU/g of Glucan) Residual Solids Hydrolyzate Liquid AFEX System Treated Stover Ammonia Stover lb 100 lb (dry basis) 36.1 lb glucan 21.4 lbxylan 39.2 lb 95.9% glucan conversion to glucose, 77.6% xylan conversion to xylose 99% mass balance closure includes: (solids + glucose + xylose + arabinose ) Wash 2 lb 99.0 lb Solids washed out 38.5 lb glucose 18.9 lbxylose (Ave. of 4 runs) Very few solubles from pretreatment—about 2% of inlet stover

CAFI USDA IFAFS Project Overview Multi-institutional effort funded by USDA Initiative for Future Agriculture and Food Systems Program for $1.2 million to develop comparative information on cellulosic biomass pretreatment by leading pretreatment options with common source of cellulosic biomass (corn stover) and identical analytical methods –Aqueous ammonia recycle pretreatment - YY Lee, Auburn University –Water only and dilute acid hydrolysis by co-current and flowthrough systems - Charles Wyman, Dartmouth College –Ammonia fiber explosion (AFEX) - Bruce Dale, Michigan State University –Controlled pH pretreatment - Mike Ladisch, Purdue University –Lime pretreatment - Mark Holtzapple, Texas A&M University –Logistical support and economic analysis - Rick Elander/Tim Eggeman, NREL through DOE Biomass Program funding Completed in 2004 Biomass Refining CAFI

Feedstock: Corn Stover NREL supplied corn stover to all project participants (source: BioMass AgriProducts, Harlan IA) Stover washed and dried in small commercial operation, knife milled to pass ¼ inch round screen Glucan36.1 % Xylan21.4 % Arabinan3.5 % Mannan1.8 % Galactan2.5 % Lignin17.2 % Protein4.0 % Acetyl3.2 % Ash7.1 % Uronic Acid3.6 % Non-structural Sugars1.2 % Biomass Refining CAFI

Calculation of Sugar Yields Comparing the amount of each sugar monomer or oligomer released to the maximum potential amount for that sugar would give yield of each However, most cellulosic biomass is richer in glucose than xylose Consequently, glucose yields have a greater impact than for xylose Sugar yields in this project were defined by dividing the amount of xylose or glucose or the sum of the two recovered in each stage by the maximum potential amount of both sugars –The maximum xylose yield is 24.3/64.4 or 37.7% –The maximum glucose yield is 40.1/64.4 or 62.3% –The maximum amount of total xylose and glucose is 100%. Biomass Refining CAFI

Pretreatment Yields at 60 FPU/g Glucan Pretreatment system Xylose yields*Glucose yields*Total sugars* Stage 1Stage 2Total xylose Stage 1 Stage 2Total glucose Stage 1Stage 2Combined total Maximum possible Dilute acid32.1/ / / /91.7 Flowthrough36.3/1.70.8/ /2.44.5/ / / / /63.8 Controlled pH 21.8/ / / AFEXND/ ND/92.0 ARP17.8/ / / /76.4 Lime9.2/ / / / / /80.3 *Cumulative soluble sugars as total/monomers. Single number = just monomers. Increasing pH Biomass Refining CAFI

Pretreatment Yields at 60 FPU/g Glucan Pretreatment system Xylose yields*Glucose yields*Total sugars* Stage 1Stage 2Total xylose Stage 1 Stage 2Total glucose Stage 1Stage 2Combined total Maximum possible Dilute acid32.1/ / / /91.7 Flowthrough36.3/1.70.8/ /2.44.5/ / / / /63.8 Controlled pH 21.8/ / / AFEXND/ ND/92.0 ARP17.8/ / / /76.4 Lime9.2/ / / / / /80.3 *Cumulative soluble sugars as total/monomers. Single number = just monomers. Increasing pH Biomass Refining CAFI

Pretreatment Yields at 15 FPU/g Glucan Pretreatment system Xylose yields*Glucose yields*Total sugars* Stage 1Stage 2Total xylose Stage 1 Stage 2Total glucose Stage 1Stage 2Combined total Maximum possible Dilute acid32.1/ / / /91.5 Flowthrough36.3/1.70.6/ /2.24.5/ / / / /61.8 Controlled pH 21.8/ /9.93.5/ / / /63.0 AFEX34.6/ /89.1 ARP17.8/ / / /71.6 Lime9.2/ / / / / /77.2 *Cumulative soluble sugars as total/monomers. Single number = just monomers. Increasing pH Biomass Refining CAFI

Pretreatment Yields at 15 FPU/g Glucan Pretreatment system Xylose yields*Glucose yields*Total sugars* Stage 1Stage 2Total xylose Stage 1 Stage 2Total glucose Stage 1Stage 2Combined total Maximum possible Dilute acid32.1/ / / /91.5 Flowthrough36.3/1.70.6/ /2.24.5/ / / / /61.8 Controlled pH 21.8/ /9.93.5/ / / /63.0 AFEX34.6/ /89.1 ARP17.8/ / / /71.6 Lime9.2/ / / / / /77.2 *Cumulative soluble sugars as total/monomers. Single number = just monomers. Increasing pH Biomass Refining CAFI

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime Pretreatment Yields at 15 FPU/g Glucan

DOE OBP Project: April 2004 Start Funded by DOE Office of the Biomass Program for $1.88 million through a joint competitive solicitation with USDA Using identical analytical methods and feedstock sources to develop comparative data for corn stover and poplar Determining more depth information on –Enzymatic hydrolysis of cellulose and hemicellulose in solids –Conditioning and fermentation of pretreatment hydrolyzate liquids –Predictive models Added University of British Columbia to team through funding from Natural Resources Canada to –Capitalize on their expertise with xylanases for better hemicellulose utilization –Evaluate sulfur dioxide pretreatment along with those previously examined: dilute acid, controlled pH, AFEX, ARP, lime Augmented by Genencor to supply commercial and advanced enzymes Biomass Refining CAFI

Tasks for the DOE OBP Project Biomass Refining CAFI Pretreat corn stover and poplar by leading technologies to improve cellulose accessibility to enzymes Enzymatically hydrolyze cellulose and hemicellulose in pretreated biomass, as appropriate, and develop models to understand the relationship between pretreated biomass features, advanced enzyme characteristics, and enzymatic digestion results Develop conditioning methods as needed to maximize fermentation yields by a recombinant yeast, determine the cause of inhibition, and model fermentations Estimate capital and operating costs for each integrated pretreatment, hydrolysis, and fermentation system and use to guide research

CAFI 2 Stover Biomass Refining CAFI 2 nd pass harvested corn stover from Kramer farm (Wray, CO) –Collected using high rake setting to avoid soil pick-up –No washing –Milled to pass ¼ inch round screen

Feedstock: USDA-supplied hybrid poplar (Alexandria, MN) –Debarked, chipped, and milled to pass ¼ inch round screen Biomass Refining CAFI CAFI 2 Poplar

Pretreated Substrate Schedule Pretreatment/SubstrateExpected Date Dilute Acid/Corn StoverSeptember 2004 Dilute Acid/Poplar (Bench Scale)October 2004 Dilute Acid/Poplar (Pilot Plant)December 2004 SO 2 /Corn StoverMarch 2005 Controlled pH/PoplarMay 2005 SO 2 /PoplarAugust 2005 Ammonia Fiber Explosion/PoplarSeptember 2005 Ammonia Recycled Percolation/PoplarOctober 2005 Flowthrough/PoplarMarch 2006 Lime/PoplarApril 2006 Biomass Refining CAFI

Enzymatic Hydrolysis of Dilute Acid Pretreated Poplar 2% glucan concentration 50 FPU/g glucan, no β-glucosidase supplementation

95% conversion of glucan to glucose 64% conversion of xylan to xylose 83% overall yield of sugars SO 2 Pretreatment of Corn Stover Corn stover 36.1 g glucan 21.4 g xylan Pretreatment (190 o C, 5min, 3% SO 2) Liquid phase Solid phase Sugars 1.2 g glucose 8.7 g xylose Sugars 36.9 g glucose 6.8 g xylose Hydrolysis (60FPU/g of glucan) Biomass Refining CAFI

0.9% (w/v) consistency, corn stover o C, 5min, 3% S0 2, g Spezyme SP, g cocktail BG-X g of protein/g of cellulose0.03g of protein/g of cellulose 0.06g of protein/g of cellulose 12% 21% 31% Method: High Throughput Microassay Xylanase Supplementation of SO 2 Treated Stover Biomass Refining CAFI

Dilute Acid Pretreated Corn Stover Hydrolyzate Fermentation (resin conditioned) Biomass Refining CAFI

Initial Fermentation Results after 144 hours Control OverlimeXAD 4 Overlime + XAD4 Xylose Consumed ( %) Ethanol Yield (% theoretical for glucose + xylose consumed) Biomass Refining CAFI

Observations for Corn Stover All pretreatments were effective in making cellulose accessible to enzymes Lime, ARP, and flowthrough remove substantial amounts of lignin and achieved somewhat higher glucose yields from enzymes than dilute acid or controlled pH However, AFEX achieved slightly higher yields from enzymes even though no lignin was removed Cellulase was effective in releasing residual xylose from all pretreated solids Xylose release by cellulase was particularly important for the high-pH pretreatments by AFEX, ARP, and lime, with about half being solubilized by enzymes for ARP, two thirds for lime, and essentially all for AFEX Biomass Refining CAFI

Caveats The yields can be further increased for some pretreatments with enzymes a potential key Mixed sugar streams will be better used in some processes than others Oligomers may require special considerations, depending on process configuration and choice of fermentative organism The conditioning and fermentability of the sugar streams must be characterized Initial results are for corn stover, and performance with other feedstocks will likely be different as already found for poplar Biomass Refining CAFI

Impact and Opportunities The results from this project will provide a basis for industry to select technologies to commercialize Results should also suggest new enzyme and organism strategies Further research is important to understand reasons for performance differences Consideration should be given to taking advantage of differences among pretreatment options Biomass Refining CAFI

Acknowledgments US Department of Agriculture Initiative for Future Agricultural and Food Systems Program, Contract US Department of Energy Office of the Biomass Program, Contract DE-FG36- 04GO14017 Natural Resources Canada Biomass Refining CAFI

Questions? Biomass Refining CAFI