Modification chimique de surface pour laccrochage de biomolécules Bernard Bennetau Directeur de Recherche CNRS LCOO, UMR 5802 CNRS

Slides:



Advertisements
Similar presentations
Organic Chemistry Chapter 24b-c
Advertisements

Adsorption and self-assembly of alkanethiols on GaAs (001) surface
What is Nanotechnology
Nanostructured surfaces for blood proteins selective adsorption
Tunable Surface Assembly of Gold Nanorods for Biosensor Applications
Abstract This paper is focused on the study of different functionalised nanostructurated silicon – porous silicon – layers with the aim to find the suitable.
ILCC Edinburgh, July 2002 VAN DER WAALS INTERACTION AND STABILITY OF MULTILAYERED LIQUID-CRYSTALLINE SYSTEMS dr. Andreja [ arlah Univerza v Ljubljani.
Conclusions Future work Methods Background Introduction Lily Stanley, Juan Du, and Xuan Gao Department of Physics, Case Western Reserve University Nanowire.
Vibrational Sum Frequency Generation Studies of Self Assembled Monolayers on Gold for Biological Functionalization Achani K. Yatawara Department of Chemistry.
Process Measurements Division Surface Immobilization of Biopolymers Patent #5,942,397 Issued Aug. 24, 1999 Inventors: Michael J. Tarlov, Tonya M. Herne,
Synthesis of Nitric Oxide- Releasing Gold Nanoparticles J. Am. Chem. Soc. 2005, 127, Aaron R. Rothrock, Robert L. Donkers, and Mark H. Schoenfisch*
Conclusions Characterization of Self-Assembled Monolayers of Octadecanethiol and Dodecanethiol Joya Cooley, Brian Toney, Marion Martin.
PH and Redox.
TOWARD HIGH ACTIVITY WITH PHOTOCATALYST DESIGN Dr. Leny Yuliati January 21-22, 2014 Workshop on Nanomaterials for Photocatalytic Depollution: Science and.
School of Chemistry University of Nottingham Probing the Morphology of Interstellar Ice Analogues In Memory of Rui Chen. Mark Collings School of Chemistry,
Analysis of nanostructural layers using low frequency impedance spectroscopy Hans G. L. Coster Part 2: Dielectric Structure Refinement.
Study Sheet for Chapter 2 Honors Biology
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Technology
Non Specific Binding (NSB) in Antigen-Antibody Assays Chem 395 Spring 2007 Instructor : Dr. James Rusling Presenter : Bhaskara V. Chikkaveeraiah.
Strategies to build mixed DNA and PEG films on silica surfaces to achieve molecularly uniform biosensing conditions Acknowledgements Conclusion It is evident.
Application of Silicon Nanowire in Biosensor Student: HongPhan ID: Professor: Cheng-Hsien Liu.
Class 6 DNA Arrays BIOMEMS, Fall Content u Polymerase Chain Reaction or PCR u DNA Detection Process u DNA Micro Arrays u Electronic DNA Arrays u.
Enzyme Assays on Chips. Introduction Enzyme assays are used for discovery and characterization of enzymes Identification of protein function instead of.
Methods Micro-contact printing Monolayer UV mask Micro-lithography Limited by wavelength X ~  m ~ 10nm Nano-writing Phase separated Langmuir-Blodgett.
1 Surfaces of materials Surface Modification Techniques U785 Introduction to Nanotechnology Spring 2003 Lecture 3.
S-layer proteins Potential Application in Nanobiotechnology.
Self-Assembled Monolayers (SAMs) ——————————————————————————————————————— By Jingpeng Wang CHEM*7530 Feb
System Design of a Molecular Communication Network Christina Wong 1,Tatsuya Suda 2 (Faculty Mentor) 1 Department of Biomedical Engineering, 2 School of.
Friction Reduction in Micro-motors using Self-Assembled Monolayers ME 395 Project Y. Zhu, J. Gregie & P. Prabhumirashi 5 th June, 2000.
MATERIALS FOR NANOTECHNOLOGIES CMAST (Computational MAterials Science & Technology) Virtual Lab Computational Materials Science.
Mechanical biosensors. Microcantilevers.Thermal sensors.
Surface Modification for Biomaterials Applications
Scanning Probe Lithography in BioNanoTechnology
Metal Nanoparticle/Carbon Nanotube Catalysts Brian Morrow School of Chemical, Biological and Materials Engineering University of Oklahoma.
BIOCAPTEUR : éléments 1 composé à analyser 2 Récepteur biologique
New approach for the determination of the hybridization efficiency of ssDNA nanopatches 1. CNR-INFM, Laboratorio Nazionale TASC, Trieste, Italy 2. SISSA,
Department of Chemistry-BK 21, SungKyunKwan Univ.
E-beam Size-Dependent Self- Assembly Protein Array.
Investigating the Origins of Protein-Surface Adsorption: Experimental Results.
Topic: Investigation of nanocrystalline diamond films for artificial photosynthesis Patras, Greece   Violeta Popova, Christo Petkov 1.
Etching of Organo-Siloxane Thin Layer by Thermal and Chemical Methods
AFM Image-Based Binding Assay CISMM: Computer Integrated Systems for Microscopy and Manipulation Collaborators: Jude Samulski (UNC Gene Therapy Center),
Department of Chemistry , SungKyunKwan University
Sample Scanner Laser Position Sensitive Photodiode Tip Cantilever AFM working in IFJ atomic force microscopy FNFN FLFL.
Jared DeSoto, Anirban Sarkar, and Theda Daniels-Race
The Materials and Fabrication Techniques Used to Reduce Them The Materials and Fabrication Techniques Used to Reduce Them Guide-PROF.S.CHAKKA presented.
Glass surface modification by coating deposition
Paul Frank Institute of Solid State Physics, Graz University of Technology Financially supported by the Austrian Science Fund.
Definition Surface Modification
Study of some gilded film/glass interfaces and of one standard type of “liquid gold” XVI ICF TECHNICAL EXCHANGE CONFERENCE 9 th -12 th October 2004 Karlovy.
SOL-GEL METHOD The sol-gel process may be described as: ”Formation of an oxide network through hydrolisis and polycondensation reactions of a molecular.
Neethu Xavier St. Alberts College Cochin, India Microcantilever Biosensors: Making Sensors Reliable.
Innovative Micromegas manufacturing with Microfabrication techniques
PARAMETERS THAT INFLUENCE SHS POST THERMAL TREATMENT
Carlos Andrés Jarro Dr. J. Todd Hastings
Immobilization Of Biomolecules On Biosensors
Synthesis and Evaluation of anti-Nonspecific Binding Coating in Microfluidic Devices for ELISA Bioassays Melissa J. Gelwicks.
The Role of Surface Modification on Nanoparticle Formation by Atomic Layer Deposition Stacey F. Bent, Department of Chemical Engineering, Stanford University.
Frank Greer, David Fraser, John Coburn, David Graves
Immobilization Techniques for DNA biosensor
Preparation of Surface for Biomolecule Immobilization
THIN FILM BARRIER FORMATION IN MICROCAVITIES
Pinar Beyazkilic,1,2, Abtin Saateh,1,2 and Caglar Elbuken1,2,*
Gisselle Gonzalez1, Adam Hinckley2, Anthony Muscat2
IISME Fellowship Description
David A. Spivak, Department of Chemistry, Louisiana State University
Deposition of Alkanethiolate Self-Assembled Monolayers on Germanium
Deposit latex particles onto silicon substrate
Pinar Beyazkilic,1,2, Abtin Saateh,1,2 and Caglar Elbuken1,2,*
Biosensors and BioMEMS Lecturer : Dr Nashrul Fazli Mohd Nasir
Presentation transcript:

Modification chimique de surface pour laccrochage de biomolécules Bernard Bennetau Directeur de Recherche CNRS LCOO, UMR 5802 CNRS

Collaboration P. L. Tran, ENS Cachan D. Rebière, C. Dejous, IXL, Univ. Bx I E. Souteyrand, J. P. Cloarec, E. C. Lyon G. Deléris, INSERM, Univ. Bx II J. P. Aimé, CPMOH, Univ. Bx I B. Desbat, LPCM, Univ. Bx I D. Moynet, LI, Univ. Victor Ségalen Dinh Haï (PhD) F. Choplin (PhD) P. Martin (PhD) D. Bousbaa (post-doc) SURFACE MODIFICATION Permanent members Dr B. Bennetau Dr J.-P. Pillot Dr L. Vellutini L. Thomas PROTECTIVE COATINGS Collaboration B. Desbat, LPCM, Univ. Bx I Institut de Technologie Tropicale, Hanoï, Viet Nam N. Pébère (CIRIMAT, Toulouse) Permanent members Dr J.-P. Pillot Dr M. Birot Dao Thé Minh (PhD) Tran Thuy (PhD) M. Boutar (post-doc)

Modification chimique de surface = propriétés spécifiques Oléophobe / Hydrophobe Modification de surface

Bacteria DNA Blood cells Surface modification for immobilization of biomolecules Antibodies Biosensor

Why ? - to modify the wettability properties to improve the biocompatibility between the substrate and the biomolecules - to introduce on the surface the required chemical functions (OH, COOH, NH2...) - the density surface coverage should be optimized : * a low density surface coverage will yield a correspondingly low density of biomolecules * A high surface density may prevent interactions between immobilized probes biomolecules and target molecules What are the properties needed for the organic film ? - thermal stability - chemical stability (UV, hydrolysis, acid and bases are often used to immobilize or to synthesize in situ, biomolecules) - activity of the biomolecules must be preserved Surface modification for immobilization of biomolecules To deposit biomolecules on mineral surfaces (Si/SiO 2 wafers, microscope glass slides), the first step is the grafting of an organic film Chemical surface modification = chemical bonding of molecules to a surface in order to change its chemical or physical properties in a controlled way.

Surface modification by silylated coupling agents Surface Commercially available compounds "Idealize surface" Silanization reaction The silanization reaction = "capricious " (high level of irreproducibility)

The true surface is an heterogeneous surface (roughness, chemical functions) Surface Surface modification for immobilization of biomolecules - Reproducibity problems due to the high number of relevant parameters : (cleaning procedure, solvents, temperature of reaction, characterization of the modified surfaces…

Goals : - avoid further reactions on the substrate - obtain a true dense and homogeneous Self-Assembled Monolayer (SAMs) to protect siloxanic bonds (Si-O-Si) between the coupling agents and the surface. - covalent immobilization may result in better biomolecule activity, reduced nonspecific adsorption, and greater stability. - Synthesis of functionnalized long-chain silanes true dense monolayer - Characterization of the grafted monolayer at different scale ( m to nm) « DNA chips ". GENOME program (CNRS 97/00; OO/O2). Surface modification by silylated coupling agents

SAMs (silanes on silicon oxides) - driving force : maximization of chain-chain interactions (VdW) - Stability of the monolayer = chain length dependent. Properties : - covalent bonding; headgroups can be –SiCl 3 ; -Si(OR) 3 - stable and well-oriented layers - strong and well protected bonds between the organic film and the substrate Self-Assembled Monolayers (SAMs)

n H2OH2O + Covalent bondings Octadecyltrichlorosilane (solution)

OH protected silylated compounds Br MeLi/THF ( ) 11 1) 5% CuI MgBr Mg/THF ( ) 9 Br ( ) 9 BrOH ( ) 11 Br ( ) 20 Br MeLi/THF ( ) 11 1) 5% CuI 2) H 3 O + Mg/THF ( ) 9 Br ( ) 9 Br ( ) 11 OCOCH 3 ( ) 20 CH 3 COCl/Et 3 N CH 2 Cl 2 OCOCH 3 ( ) 25 H-SiCl 3 Pt OCOCH 3 Cl 3 Si ( ) 20 OCOCH 3 Cl 3 Si ( ) 25 / MeLi/THF 3) 5% CuI 1) Mg/THF BrOH ( ) 5 2) OH ( ) 20 OH ( ) 25 2) H 3 O + H-SiCl 3 CH 3 COCl/Et 3 N CH 2 Cl 2 OLi MgBr Bennetau B.; Bousbaa J.; Choplin F. CNRS Patent, 2001, WO/FR01/00139; licensed to ROSATECH.

Coll. with B. Desbat (LPCM, UMR 5803 CNRS, Université Bordeaux I) n = 16 n = ,9 99,0 99,1 99,2 99,3 99,4 99,5 99,6 99,7 99,8 99,9 100,0 100,1 Transmittance Wave number (cm ) a CH 2 s n = 22 Choplin, F.; Navarre, S.; Bousbaa, J.; Babin, P.; Bennetau, B.; Bruneel, JL.; Desbat, B. Journal of Raman Spectroscopy 2003, 34, 902. Glass slides "silanized" with Cl 3 Si-(CH 2 ) n -OCOR

,6 98,8 99,0 99,2 99,4 99,6 99,8 100,0 100,2 Transmittance Wave number (cm -1 ) n = 16 n = 22 n = 27 Choplin, F.; Navarre, S.; Bousbaa, J.; Babin, P.; Bennetau, B.; Bruneel, JL.; Desbat, B. Journal of Raman Spectroscopy 2003, 34, 902. After deprotection Glass slides "silanized" with Cl 3 Si-(CH 2 ) n -OCOR Coll. with B. Desbat (LPCM, UMR 5803 CNRS, Université Bordeaux I)

Choplin, F.; Navarre, S.; Bousbaa, J.; Babin, P.; Bennetau, B.; Bruneel, JL.; Desbat, B. Journal of Raman Spectroscopy 2003, 34, 902. Reproducibility Glass slides "silanized" with Cl 3 Si-(CH 2 ) n -OCOR Coll. with B. Desbat (LPCM, UMR 5803 CNRS, Université Bordeaux I) Wave numbers (cm -1 ) ,0 99,2 99,4 99,6 99,8 100,0 100,2 Transmittance

Raman cartography Choplin, F.; Navarre, S.; Bousbaa, J.; Babin, P.; Bennetau, B.; Bruneel, JL.; Desbat, B. Journal of Raman Spectroscopy 2003, 34, 902. Coll. with B. Desbat (LPCM, UMR 5803 CNRS, Université Bordeaux I)

Choplin, F.; Navarre, S.; Bousbaa, J.; Babin, P.; Bennetau, B.; Bruneel, JL.; Desbat, B. Journal of Raman Spectroscopy 2003, 34, 902. Raman cartography Coll. with B. Desbat (LPCM, UMR 5803 CNRS, Université Bordeaux I)

Bennetau B.; Bousbaa J.; Choplin F. CNRS patent, 2001, WO/FR01/00139; licensed to ROSATECH. PEG terminated long-chain alkylsilanes

Coll. with JP Aimé (CPMOH, UMR 5798 CNRS, Université Bordeaux I) 5 m True monolayer Navarre, S.; Choplin, F.; Bousbaa, J.; Bennetau, B.; Nony, L.; Aime, J.-P.; Langmuir 2001, 17, Si/SiO 2 wafers "silanized" with Cl 3 Si-(CH 2 ) 22 -(OCH 2 CH 2 ) 3 -OH

Hybridization on SAMs [ Cl 3 Si-(CH 2 ) 22 -EG 3 -COR] Bennetau B.; Bousbaa J.; Choplin F; Souteyrand E.; Martin JR.; Cloarec JP. CNRS Patent, 2001, WO/FR01/00140; licenced to ROSATECH. CGTCTCTGGGCT CGTCTCCGGGCT CGTCTCAGGGCT X Z Y Hybridization happens between any two complementary single stranded molecules Complement of X Complement of Z Complement of Y

Martin P., Marsaudon S., Thomas L., Desbat B., Aimé J-P., Bennetau B. Langmuir 2005, 21, ; Nanotechnology 2005, 16, 901–907 DNA adsorbed on aminated silicon wafer surfaces

Martin P., Marsaudon S., Thomas L., Desbat B., Aimé J-P., Bennetau B. Langmuir 2005, 21, ; Nanotechnology 2005, 16, 901–907 5 m DNA adsorbed on aminated silicon wafer surfaces

Institut d'Alembert – IFR 121 Applications des Lasers et Molécules aux Biotechnologies et Réseaux de Télécommunication Surfacecells antibodies Cells (Number) Epoxy surf.T47D anti-HER Epoxy. Surf.MCF7 anti-HER NH 2 /BS3MCF7 anti-epithelial 2260 NH 2 /BS3MCF7 anti-HER NH 2 /EDCMCF7 anti-epithelial 3806 NH 2 /EDCT47D anti-HER Tumoral cells on microscope glass slides BS3 : Bis[sulfosuccimidyl]suberate EDC : Ethyldiethylaminopropylcarbodiimide

Tumoral cells on microscope glass slides Bennetau B.; Tran L. Brevet FR04/07722, CNRS/ENS Cachan/Univ Bx I. - Epoxy groups on the surface - Cells T47D 1.5 cm 3 cm

Coll. : D. Rebière, C. Dejous (IXL); D. Moynet, E. Pascal (Univ. Bx II); B. Bennetau, JP Pillot, L Vellutini, L Thomas (LCOO) V In Génération de londe Réception de londe Biomolecules to detect Love waves Mat piézo-électrique (Quartz) Delayed decay V Out Variation fréquence (kHz) Time (min) Addition of biological species Quartz Sensitive layer Guidewave layer (SiO 2 ) Antibodies Silylated coupling agents BORDEAUX

Collaborations P. L. Tran, ENS Cachan D. Rebière, C. Dejous, IXL, Univ. Bx I E. Souteyrand, J. P. Cloarec, C S, Lyon G. Deléris, INSERM, Univ. Bx II J. P. Aimé, CPMOH, Univ. Bx I B. Desbat, LPCM, Univ. Bx I Financial supports Proteomic and Protein Engineering Program, (CNRS ) Nanoscience Program (CNRS, CA 2004) PhD grant (Conseil Régional dAquitaine, 2002/2005) BQR (Unviv. Bx 1, 2002/2004) Nanobioengineering (ACI CNRS, ) GENOME Program (CNRS, ) Students Dinh Haï (PhD) F. Choplin (PhD) P. Martin (PhD) D. Bousbaa (post-doc) SURFACE MODIFICATION Permanent members Dr B. Bennetau Dr J.-P. Pillot Dr L. Vellutini L. Thomas PROTECTIVE COATINGS Collaborations B. Desbat, LPCM, Univ. Bx I Institut de Technologie Tropicale, Hanoï, Viet Nam N. Pébère (CIRIMAT, Toulouse) Financial supports ESPOIR Program (MAE, ) Corrosion-PED Program (CNRS) Pôle Aquitaine Matériaux Conseil Régional dAquitaine SNECMA Moteurs Permanent members Dr J.-P. Pillot Dr M. Birot Students Dao Thé Minh (PhD) Tran Thuy (PhD) M. Boutar (post-doc)