Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

Cavity cooling of a single atom James Millen 21/01/09.
First Year Seminar: Strontium Project
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Rydberg & plasma physics using
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Ultra-Cold Strontium Atoms in a Pyramidal Magneto-Optical Trap A.J. Barker 1, G. Lochead 2, D. Boddy 2, M. P. A. Jones 2 1 Ponteland High School, Newcastle,
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Bose-Fermi Degeneracy in a Micro-Magnetic Trap Seth A. M. Aubin University of Toronto / Thywissen Group February 25, 2006 CIAR Ultra-cold Matter Workshop,
Probing the Rydberg spectrum of strontium – group meeting Probing the Rydberg spectrum of strontium James Millen.
Graham Lochead 07/09/09 Pulsed laser spectroscopy in strontium.
~ 12  m Neutral atom quantum computing in optical lattices: far red or far blue? C. S. Adams University of Durham 17 November 2004 University of Durham.
Anderson localization in BECs
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Approaches to Rydberg spatial distribution measurement Graham Lochead 24/01/11.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
A Magneto-Optical Trap for Strontium James Millen A Magneto-Optical Trap for Strontium – Group meeting 29/09/08.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Frequency axis calibration and the state of affairs in Team Strontium
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Dipole-dipole interactions in Rydberg states. Outline Strontium experiment overview Routes to blockade Dipole-dipole effects.
Hyperfine Studies of Lithium using Saturated Absorption Spectroscopy Tory Carr Advisor: Dr. Alex Cronin.
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Rydberg & plasma physics using ultra-cold strontium James Millen Supervisor: Dr. M.P.A. Jones Rydberg & plasma physics using ultra-cold strontium.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
Graham Lochead 19/07/10 Lens setup for Rydberg spatial distribution.
Autoionization of strontium Rydberg states
Excited state spatial distributions Graham Lochead 20/06/11.
A strontium detective story James Millen Strontium detective – Group meeting 19/10/09 Ions‽
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
Laser Locking for Long-term Magneto-Optical Trap Stability Kevin W. Vogel Advisor: Georg Raithel Presented 07/28/04.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Exploring The Quantum Department of Physics Entering the FreezerThe Age of the Qubit HOTCOLD Quantum properties emerge at extremes of energy. We work with.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
High-performance Apparatus for Bose-Einstein Condensation of Rubidium Yoshio Torii Erik Streed Micah Boyd Gretchen Campbell Pavel Gorelik Dominik Schneble.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Obtaining Ion and Electron Beams From a source of Laser-Cooled Atoms Alexa Parker, Gosforth Academy  Project Supervisor: Dr Kevin Weatherill Department.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Saturation in Multi-level Atoms from First Principles Dustin Stuart 1, Gar-Wing Truong 1, Tom Stace 2 Eric May 1, Andre Luiten 1 1 Frequency Standards.
Progress of the Laser Spectroscopy Program at Bridgewater State College Greg Surman, Brian Keith, and Edward Deveney Department of Physics, Bridgewater.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Doppler Free LASER Spectroscopy
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
The 4th Yamada Symposium Advanced Photons and Science Evolution
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Multiplexed saturation spectroscopy with electro-optic frequency combs
Excitation control of a cold strontium Rydberg gas
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
High-resolution Laser Spectroscopy
Spectroscopy of solar prominences simultaneously from space and ground
Quantum Phases Beyond Single-atom Condensation
Presentation transcript:

Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University

Graham Lochead YAO 2009 Colleagues Strontium Rydberg experiment Matt Jones Supervisor James Millen PhD student

Graham Lochead YAO 2009 Outline Overview of strontium –Structure and uses Our experiment –Aims and achievements Pyramid MOT –What is a pyramid MOT? –Why is it beneficial? –Our design Progress so far Summary

Graham Lochead YAO 2009 Overview of strontium Alkaline-earth element Atomic number 38 Two electrons in outer shell Four stable isotopes: 84 Sr 0.6% I=0 boson 86 Sr 9.9% I=0 boson 87 Sr 7% I=9/2 fermion 88 Sr 82.5% I=0 boson

Graham Lochead YAO 2009 Overview of strontium: Electronic structure 1S01S0 1P11P1 1D21D2 461 nm  /2  = 32 MHz 3P3P nm  /2  = 7.5 kHz 412 nm 698nm  /2  = 1 mHz 87 Sr 1 S 0 ground state – no x optical pumping Low decay rate to xxmeta-stable state 3 P 2 Broad linewidth for 1 S P 1 transition Intercombination line x for further cooling

Graham Lochead YAO 2009 Cold atomic uses for strontuim Ultracold atomic plasmas Optical lattice clocks From Killian et al., physics/

Graham Lochead YAO 2009 Durham strontium experiment Ultracold Rydberg state strontium atoms in an optical lattice

Graham Lochead YAO 2009 Aims of our experiment Two stage cooling to make ultracold Optical lattice from two counter-propagating beams from same laser (532nm) Excite to a Rydberg state Observe following dynamics Aims

Graham Lochead YAO 2009 Experimental setup

Graham Lochead YAO 2009 Achievements Single stage cooling to a MOT at 461nm Labview computer control setup MCP tested

Graham Lochead YAO 2009 How does the pyramid MOT fit in?

Graham Lochead YAO 2009 What is a pyramid MOT? Normal (6 beam) MOTPyramid MOT Three pairs of counter- propagating beams Single beam with four mirror creating the same optical geometry K. J. Weatherill PhD thesis (2007)

Graham Lochead YAO 2009 Pyramid MOT function Used as cold atomic source

Graham Lochead YAO 2009 Benefits of a pyramid MOT Size – much smaller than a Zeeman slower Simpler to build than complex magnetic field in ZS Simpler optical alignment than 2D mot or funnel No thermal atoms disrupting experiment

Graham Lochead YAO 2009 Our pyramid MOT design First strontium pyramid MOT Based on dispensers Novel design

Graham Lochead YAO 2009 The novelty in our design Source of hot atoms above mirrors to load MOT Hot strontium reacts with glass – coating mirrors Problem Solution Dispensers below mirrors Slits where mirrors meet in corners

Graham Lochead YAO 2009 Novel design

Graham Lochead YAO 2009 Progress so far Everything designed and ordered Waiting for chamber and mount

Graham Lochead YAO 2009 Dispenser cell Dispensers used before to create a non- pumped, buffer gasless reference cell E. M. Bridge, et al. Rev. Sci. Instrum. 80, (2009)

Graham Lochead YAO 2009 Second generation dispenser cell New cell becomes optically thick Saturated absorption spectroscopy in new cell

Graham Lochead YAO 2009 Summary 1S01S0 1P11P1 1D21D2 3P3P