Www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms Sequence Alignment.

Slides:



Advertisements
Similar presentations
Proteins: Structure reflects function….. Fig. 5-UN1 Amino group Carboxyl group carbon.
Advertisements

1 Introduction to Sequence Analysis Utah State University – Spring 2012 STAT 5570: Statistical Bioinformatics Notes 6.1.
Dynamic Programming: Sequence alignment
Measuring the degree of similarity: PAM and blosum Matrix
5’ C 3’ OH (free) 1’ C 5’ PO4 (free) DNA is a linear polymer of nucleotide subunits joined together by phosphodiester bonds - covalent bonds between.
DNA sequences alignment measurement
Sequence alignment SEQ1: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK VADALTNAVAHVDDPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA SLDKFLASVSTVLTSKYR.
Sequence analysis June 18, 2008 Learning objectives-Understand the concept of sliding window programs. Understand difference between identity, similarity.
Sequence Alignment.
Introduction to Bioinformatics Algorithms Block Alignment and the Four-Russians Speedup Presenter: Yung-Hsing Peng Date:
Scoring Matrices June 19, 2008 Learning objectives- Understand how scoring matrices are constructed. Workshop-Use different BLOSUM matrices in the Dotter.
Alignment methods and database searching April 14, 2005 Quiz#1 today Learning objectives- Finish Dotter Program analysis. Understand how to use the program.
Alignment methods April 12, 2005 Return Homework (Ave. = 7.5)
It & Health 2009 Summary Thomas Nordahl Petersen.
Scoring Matrices June 22, 2006 Learning objectives- Understand how scoring matrices are constructed. Workshop-Use different BLOSUM matrices in the Dotter.
Molecular Techniques in Molecular Systematics. DNA-DNA hybridisation -Measures the degree of genetic similarity between pools of DNA sequences. -Normally.
Introduction to bioinformatics
Sequence similarity.
Pairwise Alignment Global & local alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis.
Introduction to Bioinformatics Algorithms Sequence Alignment.
1-month Practical Course Genome Analysis Lecture 3: Residue exchange matrices Centre for Integrative Bioinformatics VU (IBIVU) Vrije Universiteit Amsterdam.
Bioinformatics Unit 1: Data Bases and Alignments Lecture 3: “Homology” Searches and Sequence Alignments (cont.) The Mechanics of Alignments.
Sequence Alignments Revisited
Alignment III PAM Matrices. 2 PAM250 scoring matrix.
Alignment methods II April 24, 2007 Learning objectives- 1) Understand how Global alignment program works using the longest common subsequence method.
Dynamic Programming I Definition of Dynamic Programming
Developing Pairwise Sequence Alignment Algorithms
Sequence Alignment.
Brandon Andrews.  Longest Common Subsequences  Global Sequence Alignment  Scoring Alignments  Local Sequence Alignment  Alignment with Gap Penalties.
Pairwise alignments Introduction Introduction Why do alignments? Why do alignments? Definitions Definitions Scoring alignments Scoring alignments Alignment.
Pairwise & Multiple sequence alignments
An Introduction to Bioinformatics
CISC667, S07, Lec5, Liao CISC 667 Intro to Bioinformatics (Spring 2007) Pairwise sequence alignment Needleman-Wunsch (global alignment)
Evolution and Scoring Rules Example Score = 5 x (# matches) + (-4) x (# mismatches) + + (-7) x (total length of all gaps) Example Score = 5 x (# matches)
Pairwise Sequence Alignment (I) (Lecture for CS498-CXZ Algorithms in Bioinformatics) Sept. 22, 2005 ChengXiang Zhai Department of Computer Science University.
Introduction to Bioinformatics Algorithms Sequence Alignment.
Alignment methods April 26, 2011 Return Quiz 1 today Return homework #4 today. Next homework due Tues, May 3 Learning objectives- Understand the Smith-Waterman.
Pairwise Sequence Alignment. The most important class of bioinformatics tools – pairwise alignment of DNA and protein seqs. alignment 1alignment 2 Seq.
Pairwise Sequence Alignment (II) (Lecture for CS498-CXZ Algorithms in Bioinformatics) Sept. 27, 2005 ChengXiang Zhai Department of Computer Science University.
Eric C. Rouchka, University of Louisville Sequence Database Searching Eric Rouchka, D.Sc. Bioinformatics Journal Club October.
Dynamic Programming: Sequence alignment CS 466 Saurabh Sinha.
. Sequence Alignment. Sequences Much of bioinformatics involves sequences u DNA sequences u RNA sequences u Protein sequences We can think of these sequences.
Pairwise alignment of DNA/protein sequences I519 Introduction to Bioinformatics, Fall 2012.
Sequence Analysis CSC 487/687 Introduction to computing for Bioinformatics.
Biology 4900 Biocomputing.
AMINO ACIDS.
Learning Targets “I Can...” -State how many nucleotides make up a codon. -Use a codon chart to find the corresponding amino acid.
Sequence alignment SEQ1: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK VADALTNAVAHVDDPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA SLDKFLASVSTVLTSKYR.
Construction of Substitution Matrices
Sequence Alignment Csc 487/687 Computing for bioinformatics.
A Table-Driven, Full-Sensitivity Similarity Search Algorithm Gene Myers and Richard Durbin Presented by Wang, Jia-Nan and Huang, Yu- Feng.
Amino Acids ©CMBI 2001 “ When you understand the amino acids, you understand everything ”
. Sequence Alignment. Sequences Much of bioinformatics involves sequences u DNA sequences u RNA sequences u Protein sequences We can think of these sequences.
In-Class Assignment #1: Research CD2
Sequence Alignment.
Construction of Substitution matrices
Step 3: Tools Database Searching
Alignment methods April 17, 2007 Quiz 1—Question on databases Learning objectives- Understand difference between identity, similarity and homology. Understand.
Protein Sequence Alignment Multiple Sequence Alignment
Techniques for Protein Sequence Alignment and Database Searching G P S Raghava Scientist & Head Bioinformatics Centre, Institute of Microbial Technology,
Prepared By: Syed Khaleelulla Hussaini. Outline Proteins DNA RNA Genetics and evolution The Sequence Matching Problem RNA Sequence Matching Complexity.
Substitution Matrices and Alignment Statistics BMI/CS 776 Mark Craven February 2002.
Sequence similarity, BLAST alignments & multiple sequence alignments
Sequence Alignment.
Protein Sequence Alignments
Sequence Alignment ..
Sequence Alignment Using Dynamic Programming
Intro to Alignment Algorithms: Global and Local
Sequence Alignment.
Pairwise Sequence Alignment (II)
Presentation transcript:

Introduction to Bioinformatics Algorithms Sequence Alignment

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Outline Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Outline - CHANGES Scoring Matrices - ADD an extra slidewith an example of 5x5 matrix. Local Alignment – ADD extra slide showing a naïve approach to local alignment

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info From LCS to Alignment: Change up the Scoring The Longest Common Subsequence (LCS) problem—the simplest form of sequence alignment – allows only insertions and deletions (no mismatches). In the LCS Problem, we scored 1 for matches and 0 for indels Consider penalizing indels and mismatches with negative scores Simplest scoring schema: +1 : match premium -μ : mismatch penalty -σ : indel penalty

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Simple Scoring When mismatches are penalized by –μ, indels are penalized by –σ, and matches are rewarded with +1, the resulting score is: #matches – μ(#mismatches) – σ (#indels)

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info The Global Alignment Problem Find the best alignment between two strings under a given scoring schema Input : Strings v and w and a scoring schema Output : Alignment of maximum score ↑→ = -б = 1 if match = -µ if mismatch s i-1,j-1 +1 if v i = w j s i,j = max s i-1,j-1 -µ if v i ≠ w j s i-1,j - σ s i,j-1 - σ  : mismatch penalty σ : indel penalty

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Scoring Matrices To generalize scoring, consider a (4+1) x(4+1) scoring matrix δ. In the case of an amino acid sequence alignment, the scoring matrix would be a (20+1)x(20+1) size. The addition of 1 is to include the score for comparison of a gap character “-”. This will simplify the algorithm as follows: s i-1,j-1 + δ (v i, w j ) s i,j = max s i-1,j + δ (v i, -) s i,j-1 + δ (-, w j )

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Measuring Similarity Measuring the extent of similarity between two sequences Based on percent sequence identity Based on conservation

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Percent Sequence Identity The extent to which two nucleotide or amino acid sequences are invariant A C C T G A G – A G A C G T G – G C A G 70% identical mismatch indel

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Making a Scoring Matrix Scoring matrices are created based on biological evidence. Alignments can be thought of as two sequences that differ due to mutations. Some of these mutations have little effect on the protein’s function, therefore some penalties, δ(v i, w j ), will be less harsh than others.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Scoring Matrix: Example ARNK A5-2 R-7 3 N--70 K---6 Notice that although R and K are different amino acids, they have a positive score. Why? They are both positively charged amino acids  will not greatly change function of protein.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Conservation Amino acid changes that tend to preserve the physico-chemical properties of the original residue Polar to polar aspartate  glutamate Nonpolar to nonpolar alanine  valine Similarly behaving residues leucine to isoleucine

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Scoring matrices Amino acid substitution matrices PAM BLOSUM DNA substitution matrices DNA is less conserved than protein sequences Less effective to compare coding regions at nucleotide level

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info PAM Point Accepted Mutation (Dayhoff et al.) 1 PAM = PAM 1 = 1% average change of all amino acid positions After 100 PAMs of evolution, not every residue will have changed some residues may have mutated several times some residues may have returned to their original state some residues may not changed at all

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info PAM X PAM x = PAM 1 x PAM 250 = PAM PAM 250 is a widely used scoring matrix: Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys... A R N D C Q E G H I L K... Ala A Arg R Asn N Asp D Cys C Gln Q Trp W Tyr Y Val V

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info BLOSUM Blocks Substitution Matrix Scores derived from observations of the frequencies of substitutions in blocks of local alignments in related proteins Matrix name indicates evolutionary distance BLOSUM62 was created using sequences sharing no more than 62% identity

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info The Blosum50 Scoring Matrix

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Local vs. Global Alignment The Global Alignment Problem tries to find the longest path between vertices (0,0) and (n,m) in the edit graph. The Local Alignment Problem tries to find the longest path among paths between arbitrary vertices (i,j) and (i’, j’) in the edit graph.

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Local vs. Global Alignment The Global Alignment Problem tries to find the longest path between vertices (0,0) and (n,m) in the edit graph. The Local Alignment Problem tries to find the longest path among paths between arbitrary vertices (i,j) and (i’, j’) in the edit graph. In the edit graph with negatively-scored edges, Local Alignmet may score higher than Global Alignment

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Local vs. Global Alignment (cont’d) Global Alignment Local Alignment—better alignment to find conserved segment --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC | || | || | | | ||| || | | | | |||| | AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C tccCAGTTATGTCAGgggacacgagcatgcagagac |||||||||||| aattgccgccgtcgttttcagCAGTTATGTCAGatc

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Local Alignment: Example Global alignment Local alignment Compute a “mini” Global Alignment to get Local

An Introduction to Bioinformatics Algorithmswww.bioalgorithms.info Local Alignments: Why? Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions. Example: Homeobox genes have a short region called the homeodomain that is highly conserved between species. A global alignment would not find the homeodomain because it would try to align the ENTIRE sequence