Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.

Slides:



Advertisements
Similar presentations
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Advertisements

Introduction to Algorithms
INTERVAL TREE & SEGMENTATION TREE
Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Augmenting Data Structures Advanced Algorithms & Data Structures Lecture Theme 07 – Part I Prof. Dr. Th. Ottmann Summer Semester 2006.
COSC 6114 Prof. Andy Mirzaian. References: [M. de Berge et al] chapter 5 Applications: Data Base GIS, Graphics: crop-&-zoom, windowing.
Computational Geometry, WS 2007/08 Lecture 17 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften.
Convex Hulls Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Convex Hulls Computational Geometry, WS 2006/07 Lecture 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Klee’s Measure Problem Computational Geometry, WS 2007/08 Group Work Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
The Half-Edge Data Structure Computational Geometry, WS 2007/08 Lecture 3, Part III Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part IV Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
The Half-Edge Data Structure
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching 3Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees 2.2-dimensional.
The Lower Envelope: The Pointwise Minimum of a Set of Functions Computational Geometry, WS 2006/07 Lecture 4 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Orthogonal Range Searching-1Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees 2.2-dimensional.
Computational Geometry, WS 2007/08 Lecture 15 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften.
Lecture 5: Orthogonal Range Searching Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees.
Special Cases of the Hidden Line Elimination Problem Computational Geometry, WS 2007/08 Lecture 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Accelerated Cascading Advanced Algorithms & Data Structures Lecture Theme 16 Prof. Dr. Th. Ottmann Summer Semester 2006.
Persistent Data Structures Computational Geometry, WS 2007/08 Lecture 12 Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
1 Geometric Solutions for the IP-Lookup and Packet Classification Problem (Lecture 12: The IP-LookUp & Packet Classification Problem, Part II) Advanced.
Geometric Data Structures Computational Geometry, WS 2007/08 Lecture 13 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Hidden-Line Elimination Computational Geometry, WS 2006/07 Lecture 14 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Closest Pair of Points Computational Geometry, WS 2006/07 Lecture 9, Part II Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Polygon Triangulation Computational Geometry, WS 2007/08 Lecture 9 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 - Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Augmenting Data Structures Advanced Algorithms & Data Structures Lecture Theme 07 – Part II Prof. Dr. Th. Ottmann Summer Semester 2006.
Lecture 6: Point Location Computational Geometry Prof. Dr. Th. Ottmann 1 Point Location 1.Trapezoidal decomposition. 2.A search structure. 3.Randomized,
IP-Lookup and Packet Classification Computational Geometry, WS 2007/08 Lecture 14 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 11 : More Geometric Data Structures Computational Geometry Prof. Dr. Th. Ottmann 1 Geometric Data Structures 1.Rectangle Intersection 2.Segment.
Polygon Triangulation Computational Geometry, WS 2006/07 Lecture 8, Part 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
O RTHOGONAL R ANGE S EARCHING الهه اسلامی فروردین 92, 1.
Spatial Indexing I Point Access Methods. Spatial Indexing Point Access Methods (PAMs) vs Spatial Access Methods (SAMs) PAM: index only point data Hierarchical.
Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Fractional Cascading and Its Applications G. S. Lueker. A data structure for orthogonal range queries. In Proc. 19 th annu. IEEE Sympos. Found. Comput.
AALG, lecture 11, © Simonas Šaltenis, Range Searching in 2D Main goals of the lecture: to understand and to be able to analyze the kd-trees and.
Orthogonal Range Searching I Range Trees. Range Searching S = set of geometric objects Q = query object Report/Count objects in S that intersect Q Query.
UNC Chapel Hill M. C. Lin Orthogonal Range Searching Reading: Chapter 5 of the Textbook Driving Applications –Querying a Database Related Application –Crystal.
14/13/15 CMPS 3130/6130 Computational Geometry Spring 2015 Windowing Carola Wenk CMPS 3130/6130 Computational Geometry.
Mehdi Mohammadi March Western Michigan University Department of Computer Science CS Advanced Data Structure.
2IL50 Data Structures Fall 2015 Lecture 9: Range Searching.
Orthogonal Range Search
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Computational Geometry Piyush Kumar (Lecture 5: Range Searching) Welcome to CIS5930.
CMPS 3130/6130 Computational Geometry Spring 2015
UNC Chapel Hill M. C. Lin Geometric Data Structures Reading: Chapter 10 of the Textbook Driving Applications –Windowing Queries Related Application –Query.
May 2012Range Search Algorithms1 Shmuel Wimer Bar Ilan Univ. Eng. Faculty Technion, EE Faculty.
Geometric Data Structures
CMPS 3130/6130 Computational Geometry Spring 2017
CMPS 3130/6130 Computational Geometry Spring 2017
Orthogonal Range Searching and Kd-Trees
Shmuel Wimer Bar Ilan Univ., School of Engineering
CMPS 3130/6130 Computational Geometry Spring 2017
CMPS 3130/6130 Computational Geometry Spring 2017
Presentation transcript:

Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann2 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees 2.2-dimensional Range Search : kd-trees 3.2-dimensional Range Search : 2-dim Range Trees 4.Range Search in Higher Dimensions

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann3 Range Trees Two Dimensional Range Search y x Assumption: no two points have the same x or y coordinates

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann4 Canonical subset of a node V V split P(v) = set of points of the subtree with root v.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann5 Associated tree X Y

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann6 Range tree for a set P 1.The main tree (1st level tree) is a balanced binary search tree T built on the x – coordiante of the points in P. 2.For any internal or leaf node v in T, the canonical subset P(v) is stored in a balanced binary search tree T assoc (v) on the y – coordinate of the points. The node v stores a pointer to the root of T assoc (v) which is called the associated structure of v.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann7 Constructing range trees V p T (x – sorted) T´(v) (y – sorted) For all nodes in T store entire point information. All nodes y - presorted Build2DRangeTree(P) 1.Construct associated tree T´ for the points in P (based on y-coordinates) 2.If (  P  = 1) then return leaf(P), T´(leaf(P)) else split P into P1, P2 via median x v1 = Build2DRangeTree(P1) v2 = Build2DRangeTree(P2) create node v, store x in v, left-child(v) =v1,right-child(v) = v2 associate T´ with v

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann8 Lemma Statement : A range tree on a set of n points in the plane requires O(n log n) storage. Proof : A point p in P is stored only in the associated structure of nodes on the path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, the point p is stored in exactly one associated structure. We know that 1 – dimensional range trees use linear storage, so associated structures of all nodes at any depth of T together use O(n) storage. The depth of T is O(log n). Hence total amount of storage required is O(n log n).

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann9 Search in 2-dim-range trees Algorithm 2DRangeQuery(T,[x : x´]  [y : y´]) v split = FindSplitNode(T,x,x´) if (leaf(v split ) & v split is in R) then report v, return elsev = left-child(v split ) while not (leaf(v)) do if (x  x v ) then 1DRangeQuery(T assoc ( right-child(v)),[ y : y’]) v = left-child(v) else v = right-child(v) if (v is in R) then report v v = right-child(v split )... Similarly …

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann10 Analysis Lemma: A query with an axis – parallel rectangle in a range tree storing n points takes O(log²n + k) time, where k is the number of reported points. Proof : At each node v in the main tree T we spend constant time to decide where the search path continues and evt. call 1DRangeQuery. The time we spend in this recursive call is O(log n + k v ) where is k v the number of points reported in this call. Hence the total time we spend is Furthermore the search paths of x and x´in the main tree T have length O(log n). Hence we have

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann11 Higher-dimensional range trees Time required for construction: T 2 (n) = O( n log n) T d (n) = O( n log n) + O( log n) * T d-1 (n)  T d (n) = O( n log d-1 n) Time required for range query (without time to report points): Q 2 (n) = O( log 2 n) Q d (n) = O( log n) + O( log n) *Q d-1 (n)  Q d (n) = O( log d n)

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann12 Search in Subsets Given : Two ordered arrays A1 and A2. key(A2)  key(A1) query[x, x´] Search : All elements e in A1 and A2 with x  key(e)  x´. Idea : pointers between A1 and A2 Example query : [20 : 65] Run time : O(log n + k) Run time : O(1 + k)

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann13 Fractional Cascading Idea : P1  P, P2  P

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann14 Fractional Cascading x-value y-value Theorem : query time can be reduced to O(log n + k). Proof : In d dimension a saving of one log n factor is possible.