ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.

Slides:



Advertisements
Similar presentations
Neutrino astronomy and telescopes Teresa Montaruli, Assistant Professor, Chamberlin Hall, room 5287, Crab nebula Cen A.
Advertisements

The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Combined Energy Spectra of Flux and Anisotropy Identifying Anisotropic Source Populations of Gamma-rays or Neutrinos Sheldon Campbell The Ohio State University.
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
Hang Bae Kim (HanYang University) High KIAS-NCTS Joint Workshop
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
GZK Horizons and the Recent Pierre Auger Result on the Anisotropy of Highest-energy Cosmic Ray Sources Chia-Chun Lu Institute of Physics, National Chiao-Tung.
Implication of recent cosmic ray data Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Hong Li, Jie Liu, Bing Zhang & Xinmin Zhang.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
Magnetic Field Workshop November 2007 Constraints on Astrophysical Magnetic Fields from UHE Cosmic Rays Roger Clay, University of Adelaide based on work.
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The signature of the nearby universe on the very high energy diffuse gamma sky Århus, November 2006 Troels Haugbølle Institute for.
Ultra High Energy Cosmic Rays Theoretical Perspective(s) Angela V. Olinto CfCP, DAA, EFI University of Chicago.
What is cosmic radiation and where does it come from? Frederik Rühr, Kirchhoff-Institut für Physik, Universität Heidelberg IRTG Seminar, 26. Oktober 2007.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
Ultra high energy cosmic rays Donna Kubik Spring, 2005.
CCHJ Apr Results from the High Resolution Fly’s Eye Charles Jui HiRes Collaboration University of Utah APS Meeting, Long Beach April 30, 2000.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Spectrum, Composition, and Arrival Direction of Ultra High Energy Cosmic Rays as Measured by HiRes John Belz for the High Resolution Fly’s Eye.
TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida.
Neutrino Astronomy March 2005J. Goodman – Univ. of Maryland Neutrino Astronomy Why Neutrinos Questions in ultra high energy astrophysics –Source of UHE.
A CLUSTER OF ULTRAHIGH ENERGY COSMIC RAYS Glennys R. Farrar Center for Cosmology and Particle Physics New York University Research supported by NSF, NASA.
Testing Lorentz Invariance with UHECR Spectrum Li Ye IHEP, CAS, Sep. 26, 2008.
Detecting GRB ν’s – an Opportunity For Observing Lorentz Invariance Violation Uri Jacob and Tsvi Piran The Hebrew University Jerusalem, Israel ν γ.
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
Ultra High Energy Cosmic Rays: Strangers Shrouded In Mystery Scott Fleming High Energy Series 24 Feb
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Ultra-High Energy Cosmic Radiation and what it teaches us about astro- and fundamental physics Günter Sigl GReCO, Institut d’Astrophysique de Paris, CNRS.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
Ultra-High Energy Neutrino Fluxes Günter Sigl GReCO, Institut d’Astrophysique de Paris, CNRS  Neutrinos: A.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
con i neutrini1 Showering Neutrino Astronomies at Horizons.
HiRes 5Y Operations – Program and Context What Physics Will be Done? How Does it Compare With Other Projects?
WILGA k61/10 Search for cosmic rays from gamma ray bursts Marcin Molak Faculty of Physics Warsaw University of Technology.
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
Current Physics Results Gordon Thomson Rutgers University.
March 22, 2005Icecube Collaboration Meeting, LBL How guaranteed are GZK ’s ? How guaranteed are GZK ’s ? Carlos Pena Garay IAS, Princeton ~
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
Astrophysics of the Highest Energy Cosmic Rays Paul Sommers Cracow, Poland January 10, 2004.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
The Large High Altitude Air Shower Observatory LHAASO.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
Imaging the Neutrino Universe with AMANDA and IceCube
Determining the neutrino flavor ratio at the astrophysical source
Can dark matter annihilation account for the cosmic e+- excesses?
Haoning He(RIKEN/UCLA/PMO)
Karl Mannheim – ITPA Würzburg
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?
Particle Acceleration in the Universe
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics

David Kieda, Utah 24 November 2002ANITA Meeting UCI Outline 1)GZK energy Cosmic Ray Measurements 2)GZK energy Cosmic Ray Origin 3)EHE neutrino production 4)EHE neutrino fluxes 5)Conclusion

David Kieda, Utah 24 November 2002ANITA Meeting UCI UHE/EHE Cosmic Ray Astrophysics HiRes Fly’s Eye (2002)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Astrophysics Fly’s Eye Detector (Dugway, Utah) Hires Fly’s Eye Detector (Dugway, Utah)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Astrophysics 320 EeV Cosmic Ray: Energy beyond GZK cutoff (D. Bird et al Ap. J 441, 144 (1995)) GZK cutoff: (d>20 Mpc) Greisen PRL 16, 748 (1966) Zatsepin & Kuzmin JETP Lett 4, 78 (1966)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Spectrum HiRes Fly’s Eye (2002)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Spectrum AGASA Array (2002)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Spectrum A simple energy rescale looks promising, But….. Aertures are energy dependent (especially for HiRes & Fly’s Eye) Bachall & Waxman (2002) Discrepancy due to differences energy scale factors (within quoted systematics)?

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Arrival Directions Cosmic Ray Akeno (2000). Clustering random chance probabilty ~1% In conflict with HiRes experiment (similar exposure) Hamburg 2001). Large Scale Anisotropy: Probe correlation with anisotropy of local Galactic population (SuperGalactic Plane) or Galactic Center, Galactic Plane. >AGN, starburst, magentar, GRB populations correlated with luminous mass >Dark Matter Halo: Annihilation, Z-burst of relic massive neutrinos Small Scale Anisotropy: Event clustering with < 10 degree separation. Point source searches. Competition between increasing particle rigidity and decreasing statistic>Narrow energy window?

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Sources Bottom-Up

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Propagation Effects 1) Quantum Gravity Lorentz violation eliminates GZK (Gonzales-Mestres 1999, 2000) *Reduced interaction cross section (smaller final product phase space) *Reduced Lorentz boosted energy of  CMB -> Probe with time delay of TeV Gamma rays from AGN 2) Z-Burst Models: High Energy Neutrino interacts with heavy relic neutrino in Galactic DM halo (But isn’t this just making thing worse?)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Propagation Effects If CR are indeed extragalactic, and if GZK cutoff does exist, pion decay leads to guaranteed neutrino flux. Adapted from C. Spiering (2002).

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Sources Bottom-Up AGN with Pair production creating dip at 10 EeV V. Berezinsky et al (2002)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Sources Bottom-Up Nearby Magnetars population (< 50 Mpc) with PetaGauss B fields yields dip Arons astro-ph/

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Sources Top-Down Typical Topological defect fragmentation : Production of gammas, e+/e-, neutrinos with fluxes substantially greater than the cosmic rays (O. Kalashev et al 2002)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Neutrinos Top-Down Models vs. Bottom up give strongly different predictions for Neutrino flux Absolute neutrino flux constrained by gamma/neutrino production ratio (GeV/TeV gamma measurements) Absolute neutrino flux constrained by absolute cosmic ray flux (Bachall & Waxman bound, Mannheim, Protheroe & Rachen bound) Some wiggle room if sources are opaque to gammas/cosmic rays and/or large distances to CR sources VERITAS, tel tel. ANITA 2005 flight MAGIC, 1 tel., 2003 GLAST 2005 flight

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Neutrinos Production: Direct production in Top-Down Models (Topologcal defect decay, super-heavy dark matter annihilation, super-heavy X particle decay) Peak Energy ~100 EeV

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Neutrinos Production: Direct production in Top-Down Models Z-burst (Gelmaini, Cline, others) Peak Energy > 100 EeV

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Neutrinos Production: Secondary interactions of CR &  production/decay near acceleration region at EHE CR source (AGN, GRB) Peak energy ~ 10 PeV (Stecker and Salamon 1996)

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Cosmic Ray Background for Radio Cherenkov Measurements? Shock Wave

David Kieda, Utah 24 November 2002ANITA Meeting UCI EHE Neutrino Observations C. Spiering (2002). ANITA pushes EeV neutrino limits >Well below diffuse gamma/MPR bounds >Approaches W&B bond

David Kieda, Utah 24 November 2002ANITA Meeting UCI Conclusions Shock Wave Super GZK Cosmic rays Exist. Rate, energy spectrum, isotropy statistically limited Difficult to separate Top-Down vs. Bottom up models in cosmic ray properties TeV Gamma, BW & MPR bounds do not exclude a strongly peaked flux above 100 EeV. GZK+Universal EHE CR production yields predictable EeV flux Absence of GZK production probably implies GQ Lorentz violation Confluence of next generation TeV gamma ray, high energy neutrino & high energy cosmic ray provide strong constraints. Radio observations by ANITA play a key role in the next 5-10 years.