Chapter 1 The Art of Problem Solving © 2007 Pearson Addison-Wesley.

Slides:



Advertisements
Similar presentations
An introduction to Problem Solving Math 110 Iris Yang.
Advertisements

Chapter 1: Number Patterns 1.3: Arithmetic Sequences
MATH 90 CHAPTER 4 PART I MSJC ~ San Jacinto Campus
Chapter 1 The Art of Problem Solving © 2008 Pearson Addison-Wesley. All rights reserved.
Chapter 5 Number Theory © 2008 Pearson Addison-Wesley. All rights reserved.
Slide 1-1 Copyright © 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION.
Math 302A section 5 Spring, 2009 Instructor: Laurie Varecka.
MATH 90 CHAPTER 4 PART I MSJC ~ San Jacinto Campus
Exam 3 Material Formulas, Proportions, Linear Inequalities
Chapter 1 The Art of Problem Solving © 2007 Pearson Addison-Wesley. All rights reserved.
Survey of Mathematical Ideas Math 100 Chapter 1 John Rosson Tuesday January 23, 2007.
Survey of Mathematical Ideas Math 100 Chapter 1 John Rosson Thursday January 18.
Section 1.3 Problem Solving 1. Steps to world problem solving process 1.Understand the Problem 2.Devise a plan 3.Carry out the plan 4.Look back 5.MAKE.
Grade 3 Fluency Unit Lesson 1 I can check my fluency with addition & subtraction I can review strategies for addition I can review strategies for subtraction.
Math Standards Grades 9-12 Wesley Kroupa. -Use procedures to transform algebraic expressions A.1.1. Example: Simplify 3(x + 5) − 2(7 − 2x) Example:
What is Critical Thinking?
Chapter 1 The Art of Problem Solving © 2008 Pearson Addison-Wesley.
Chapter One  I can count and compare numbers to 1,000  I can use base-ten blocks to recognize, read, and write numbers to 1,000  I can count on by 1s,
 2012 Pearson Education, Inc. Slide Chapter 1 The Art of Problem Solving.
Page 237 #28 – 36 even, 40, 42, 45, 46, 50 – 52 (12 pbs – 16 pts) Math Pacing Writing Equations for Patterns a 7 = 22 a n = 19 + (– 2)(n – 1)a n = – 2n.
Chapter An Introduction to Problem Solving 1 1 Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Grade 2 - Unit 1 Lesson 1 I can retell, draw, and solve story problems. I can recognize math as a part of daily life. Lesson 2 I can create story problems.
Chapter 2 Arithmetic Strategies & Area
Measures of Central Tendency
Chapter 1 The Art of Problem Solving © 2008 Pearson Addison-Wesley. All rights reserved.
Grade 2- Unit 8 Lesson 1 I can define quadrilaterals.
NUMBER SENSE AT A FLIP. Number Sense Number Sense is memorization and practice. The secret to getting good at number sense is to learn how to recognize.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 1 Problem Solving and Critical Thinking.
Chapter An Introduction to Problem Solving 1 1 Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 1 Problem Solving and Critical Thinking.
Slide Section 1-4 Calculating, Estimating, and Reading Graphs.
Chapter 6 Section 6. Objectives 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Applications of Quadratic Equations Solve problems involving geometric.
HAWKES LEARNING Students Count. Success Matters. Copyright © 2015 by Hawkes Learning/Quant Systems, Inc. All rights reserved. Section 1.1 Thinking Mathematically.
Section 1.3 Problem Solving Math in Our World. Learning Objectives  State the four steps in the basic problem solving procedure.  Solve problems by.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning.
MATH 104 Chapter 1 Reasoning.
 2012 Pearson Education, Inc. Slide Chapter 1 The Art of Problem Solving.
This is a new powerpoint. If you find any errors please let me know at
CONFIDENTIAL1 OBJECTIVE: Problem Solving Plans and Strategies WARM-UP: 1.) 6 ÷ (8 - 5) + 4 x 5 2.) Evaluate 9 - 3x for x = 4; 3.) = =
CHAPTER 1 Mathematical Reasoning Section 1.1 Inductive Reasoning.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning.
Pre-Algebra 12-3 Other Sequences Check 12-2 HOMEWORK.
© 2008 Pearson Addison-Wesley. All rights reserved 1-1 Chapter 1 Section 1-1 Types of Reasoning.
Problem Solving 1. Steps to world problem solving process 1. Understand the Problem 2. Devise a plan 3. Carry out the plan 4. Look back 5. MAKE SURE YOU.
 2012 Pearson Education, Inc. Slide Chapter 1 The Art of Problem Solving.
Learn to find terms in an arithmetic sequence.
Targeting that Grade C in Mathematics A Simplified Revision Guide St Edmund Campion Mathematics Department.
Section 1.3 Problem Solving Math in Our World. Learning Objectives  State the four steps in the basic problem solving procedure.  Solve problems by.
Thinking Mathematically Problem Solving. Polya’s Four Steps Understand the problem Devise a plan Carry out the plan and solve the problem Look back and.
Chapter 1 Problem Solving Section 1-1 The Nature of Mathematical Reasoning Objectives: Identify and explain differences between types of reasoning Use.
Chapter 1 Section 1-2 An Application of Inductive Reasoning: Number Patterns © 2008 Pearson Addison-Wesley. All rights reserved.
Problem Solving and Critical Thinking
Thinking Critically 1.1 An Introduction to Problem Solving
The Art of Problem Solving
The Art of Problem Solving
Solving Problems by Inductive Reasoning
Inductive and Deductive Reasoning
Using patterns to make conjectures
Section 1-3 Chapter 1 Strategies for Problem Solving
1.3 Problem Solving.
Problem Solving and Critical Thinking
The Art of Problem Solving
The Art of Problem Solving
1 Chapter An Introduction to Problem Solving
The Art of Problem Solving
Chapter 1 The Art of Problem Solving © 2007 Pearson Addison-Wesley.
1 Chapter An Introduction to Problem Solving
The Art of Problem Solving
Pythagorean Theorem.
Presentation transcript:

Chapter 1 The Art of Problem Solving © 2007 Pearson Addison-Wesley. All rights reserved

Chapter 1: The Art of Problem Solving 1.1 Solving Problems by Inductive Reasoning 1.2 An Application of Inductive Reasoning: Number Patterns 1.3 Strategies for Problem Solving 1.4 Calculating, Estimating, and Reading Graphs

Solving Problems by Inductive Reasoning Chapter 1 Section 1-1 Solving Problems by Inductive Reasoning

Solving Problems by Inductive or Deductive Reasoning Characteristics of Inductive and Deductive Reasoning Pitfalls of Inductive Reasoning Examples of Inductive and Deductive Reasoning

Characteristics of Inductive and Deductive Reasoning Inductive Reasoning Draw a general conclusion (a conjecture) from repeated observations of specific examples. There is no assurance that the observed conjecture is always true. Deductive Reasoning Apply general principles to specific examples.

Example: Determine the type of reasoning Determine whether the reasoning is an example of deductive or inductive reasoning. All math teachers have a great sense of humor. Prof Darini is a math teacher. Therefore, Prof Darini must have a great sense of humor.

Example: predict the product of two numbers Use the list of equations and inductive reasoning to predict the next multiplication fact in the list: 37 × 3 = 111 37 × 6 = 222 37 × 9 = 333 37 × 12 = 444

Example: predicting the next number in a sequence Use inductive reasoning to determine the probable next number in the list below. 2, 9, 16, 23, 30

Pitfalls of Inductive Reasoning One can not be sure about a conjecture until a general relationship has been proven. One counterexample is sufficient to make the conjecture false.

Example: Use deductive reasoning Find the length of the hypotenuse in a right triangle with legs 3 and 4. Use the Pythagorean Theorem: c 2 = a 2 + b 2, where c is the hypotenuse and a and b are legs.

Section 1.1: Solving Problems by Inductive Reasoning Is the reasoning an example of inductive or deductive reasoning? If it rains, then Jess will stay home. It is raining. Therefore, Jess is at home. a) Deductive b) Inductive 11

Section 1.1: Solving Problems by Inductive Reasoning Is the reasoning an example of inductive or deductive reasoning? It was sunny yesterday, and it is sunny today. Therefore it will be sunny tomorrow. a) Deductive b) Inductive 12

An Application of Inductive Reasoning: Number Patterns Chapter 1 Section 1-2 An Application of Inductive Reasoning: Number Patterns 13 13

An Application of Inductive Reasoning: Number Patterns Number Sequences Successive Differences Number Patterns and Sum Formulas Figurate Numbers 14

Number Sequences Number Sequence A list of numbers having a first number, a second number, and so on, called the terms of the sequence. Arithmetic Sequence A sequence that has a common difference between successive terms. Geometric Sequence A sequence that has a common ratio between successive terms. 15

Successive Differences Process to determine the next term of a sequence using subtraction to find a common difference. 16

Example: Successive Differences Use the method of successive differences to find the next number in the sequence. 14, 22, 32, 44,... 14 22 32 44 8 10 12 Find differences 2 2 Find differences 58 14 2 Build up to next term: 58 17

Number Patterns and Sum Formulas Sum of the First n Odd Counting Numbers If n is any counting number, then Special Sum Formulas For any counting number n, 18

Example: Sum Formula Use a sum formula to find the sum 19 19

Figurate Numbers 20

Formulas for Triangular, Square, and Pentagonal Numbers For any natural number n, 21

Example: Figurate Numbers Use a formula to find the sixth pentagonal number 22 22

Section 1.2: An Application of Inductive Reasoning: Number Patterns Find the probable next number in the sequence 1, 5, 13, 25, 41,… a) 51 b) 58 c) 61 23

Section 1.2: An Application of Inductive Reasoning: Number Patterns When applying the sum formula to what is the value of n? a) 25 b) 26 c) 51 d) 52 24

Strategies for Problem Solving Chapter 1 Section 1-3 Strategies for Problem Solving 25

Strategies for Problem Solving A General Problem-Solving Method Using a Table or Chart Working Backward Using Trial and Error Guessing and Checking Considering a Similar Simpler Problem Drawing a Sketch Using Common Sense 26

A General Problem-Solving Method Polya’s Four-Step Method Step 1 Understand the problem. Read and analyze carefully. What are you to find? Step 2 Devise a plan. Step 3 Carry out the plan. Be persistent. Step 4 Look back and check. Make sure that your answer is reasonable and that you’ve answered the question. 27

Example: Using a Table or Chart A man put a pair of rabbits in a cage. During the first month the rabbits produced no offspring but each month thereafter produced one new pair of rabbits. If each new pair produced reproduces in the same manner, how many pairs of rabbits will there be at the end of the 5th month? 28

Example: Solution Step 1 Understand the problem. How many pairs of rabbits will there be at the end of five months? The first month, each pair produces no new rabbits, but each month thereafter each pair produces a new pair. Step 2 Devise a plan. Construct a table to help with the pattern. Month Number of Pairs at Start Number Produced Number of Pairs at the End 29

Example (solution continued) Step 3 Carry out the plan. Month Number of Pairs at Start Number Produced Number of Pairs at the End 1st 1 2nd 2 3rd 3 4th 5 5th 8 30

Example (solution continued) Solution: There will be 8 pairs of rabbits. Step 4 Look back and check. This can be checked by going back and making sure that it has been interpreted correctly. Double-check the arithmetic. 31

Example: Working Backward Start with an unknown number. Triple it and then subtract 5. Now, take the new number and double it but then subtract 47. If you take this latest total and quadruple it you have 60. What was the original unknown number? 32

Example: Solution Step 1 Understand the problem. We are looking for a number that goes through a series of changes to turn into 60. Step 2 Devise a plan. Work backwards to undo the changes. Step 3 Carry out the plan. The final amount was 60. Divide by 4 to undo quadruple = 15. Add 47 to get 62, then divide by 2 = 31. Add 5 to get 36 and divide by 3 = 12. 33

Example: Solution Solution The original unknown number was 12. Step 4 Look back and check. We can take 12 and run through the computations to get 60. 34

Example: Using Trial and Error The mathematician Augustus De Morgan lived in the nineteenth century. He made the following statement: “I was x years old in the year x 2.” In what year was he born? 35

Example: Guessing and Checking Find a positive natural number that satisfies the equation below. 36

Example: Considering a Simpler Problem What is the ones (or units) digit in 3200? 37

Example: Drawing a Sketch An array of nine dots is arranged in a 3 x 3 square as shown below. Join the dots with exactly four straight lines segments. You are not allowed to pick up your pencil from the paper and may not trace over a segment that has already been drawn. 38

Example: Solution Through trial and error with different attempts such as 39

Example: Using Common Sense Two currently minted United States coins together have a total value of $0.30. One is not a quarter. What are the two coins? 40

Section 1.3: Strategies for Problem Solving Given a number, you subtract 6, divide the result by 2, and then add 3 to get 15. What is the original number? a) 3 b) 24 c) 30 41

Section 1.3: Strategies for Problem Solving How many ways can you make change for fifty cents using only nickels and pennies? a) 9 b) 10 c) 11 42

Calculating, Estimating, and Reading Graphs Chapter 1 Section 1-4 Calculating, Estimating, and Reading Graphs 43 43

Calculating, Estimating, and Reading Graphs Calculation Estimation Interpretation of Graphs 44

Calculation There are many types of calculators such as four-function, scientific, and graphing. There are also many different models available and you may need to refer to your owner’s manual for assistance. Other resources for help are instructors and students that have experience with that model. 45

Example: Calculation Solution Use your calculator to find the following: a) b) c) Solution a) 3.14159265 (approximately) b) 51 c) 5.0625 46

Estimation There are many times when we only need an estimate to a problem and a calculator is not necessary. 47

Example: Estimation A 20-ounce box of cereal sells for $3.12. Approximate the cost per ounce. 48

Interpretation of Graphs Using graphs is an efficient way to transmit information. Some of the common types of graphs are circle graphs (pie charts), bar graphs, and line graphs. 49

Example: Circle Graph (Pie Chart) Use the circle graph below to determine how many of the 140 students made an A or a B. Letter Grades in College Algebra F 10% D 10% A 15% B 25% C 40% 50

Example: Bar Graph The bar graph shows the number of cups of coffee, in hundreds of cups, that a professor had in a given year. Cups (in hundreds) 2001 2002 2003 2004 2005 a) Estimate the number of cups in 2004 What year shows the greatest decrease in cups? 51

Example: Line Graph The line graph shows the average class size of a first grade class at a grade school for years 2001 though 2005. Students per class ’01 ’02 ’03 ’04 ’05 In which years did the average class size increase from the previous year? How much did the average size increase from 2001 to 2003? 52

Section 1.4: Calculating, Estimating, and Reading Graphs Compute a) 2.54 b) 8.191532 c) 4.095766 53

Section 1.4: Calculating, Estimating, and Reading Graphs If you drive 1823 miles at an average speed of 62 miles per hour, estimate the time it would take to complete the trip. a) 3 hours b) 6 hours c) 30 hours d) 300 hours 54