ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,

Slides:



Advertisements
Similar presentations
The metal-insulator transition of VO 2 revisited J.-P. Pouget Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-sud Orsay « Correlated.
Advertisements

NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Sliding of a charge density wave probed by coherent X-Ray Diffraction E. Pinsolle Laboratoire de physique des solides, Orsay.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Electronic Structure and Transport Properties of Iron Compounds: Spin-Crossover Effects. Viktor Struzhkin.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
ISCOM2009 International symposium on crystalline organic metals, superconductors, ferromagnets announcement At Niseko in Hokkaido, Japan On Sep. 12 – 17,
Collective Charge Excitations below the Metal-to-Insulator Transition in BaVS 3 Tomislav Ivek, Tomislav Vuletić, Silvia Tomić Institut za fiziku, Zagreb,
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
Semiconductors n D*n If T>0
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
F.Nad 1,2, P.Monceau 1 and H.M.Yamamoto 3 1 Institute Neel, CNRS-UJF, Batiment E, 25 rue des martyrs, BP 166, Grenoble Cedex 9, France 2 Institute.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Neutron scattering investigation of (TMTTF) 2 PF 6 P. Foury-Leylekian a, S. Petit b, B. Hennion b, A. Moradpour a and J.-P. Pouget a a.Laboratoire de Physique.
Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universit ä t Stuttgart Outline.
Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Suppression of charge ordering across the spin- Peierls transition in TMTTF based Q1D material Shigeki Fujiyama Inst. for Molecular Science (Dept. of Applied.
An Introduction to Fe-based superconductors
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
The Electronic Structure of the Ti4O7 Magneli Phase
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Charge frustration and novel electron-lattice coupled phase transition in molecular conductor DI-DCNQI 2 Ag Charge frustration and novel electron-lattice.
Scaling and the Crossover Diagram of a Quantum Antiferromagnet
Mott Transition and Superconductivity in Two-dimensional
Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Superconductivity and magnetism in iron-based superconductor
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Breakdown of the Kondo effect at an antiferromagnetic instability Outline HF quantum critical points (QCPs) Kondo breakdown QCP in YbRh 2 Si 2 Superconductivity.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Liquefying a gas by applying pressure
Liquefying a gas by applying pressure
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 3 Coupling matter to a ℤ2 gauge field in a two-leg ladder.
Presentation transcript:

ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides, ORSAY, France

ECRYS-2008, 27 August 2008 Outline Interest in ¼ band filled systems The new families (EDT-TTFCONMe 2 )X and o-(Me 2 -TTF) 2 X Study of o-(Me 2 -TTF) 2 Br and o-(Me 2 -TTF) 2 I Study of (EDT-TTF-CONMe 2 )Br Conclusions

ECRYS-2008, 27 August 2008 The physics of ¼ filled band systems-I U  1 eVV  U / 2t a  eV t c  meV V U tata

ECRYS-2008, 27 August 2008 The physics of ¼ filled band systems-II Compounds (Cation) 2 X or “2 :1” without dimerization ? Band filling = ¾ E V At low temperature… charge disproportionation Charge ordering (ferroelectricity) and antiferromagnetism

ECRYS-2008, 27 August 2008 The physics of ¼ filled band systems-III Compounds (Cation) 2 X or “2 :1” with dimerization Band filling = ½ E At low temperature… Mott insulator and antiferromagnetism - - -

ECRYS-2008, 27 August 2008 Looking for ¼ filled band systems SCSC T (K) Metal (TMTTF) 2 X MI CO  -(BEDT-TTF) 2 X 40 Temperature Pressure AF SC MI Metal SC D 8 -Br H 8 -Br Cu(NCS) 2 I3I3 H 8 -Cl No COCO hardly stabilizedCO extends widely (DI-DCNQI) 2 Ag CO AFAF T. Itou et al., Phys. Rev. B 72, (2005)

ECRYS-2008, 27 August 2008 Looking for ¼ filled band systems-II New families : (EDT-TTF-CONMe 2 ) 2 X X = AsF 6, Br (o-Me 2 TTF) 2 X X = Cl, Br, I X = AsF 6 : K. Heuzé, et al., Adv. Mat. 15 (2003) P. Batail et al., CIMA AngersM. Fourmigué et al., ISC Rennes Very weak dimerization ?

ECRYS-2008, 27 August 2008 (o-Me 2 TTF) 2 X (o-Me 2 TTF) 2 X X = Cl, Br, I  c (T) T CO1 T CO2  ’(T)

ECRYS-2008, 27 August 2008 (o-Me 2 TTF) 2 X (o-Me 2 TTF) 2 X X = Cl, Br, I Metallic in a large range of temperature (better coupling along the chain than in the TMTTF 2 X) Signatures of CO are observable : 2 anomalies, why? AF state? NMR has to be done

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br (EDT-TTF-CONMe 2 ) 2 Br Complete set of data: NMR Resistivity Dielectric constant Thermopower all under hydrostatic pressure

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 1 H NMR Determination of 1/T 1, (T, P) 1. Determination of the magnetic ground state T N weakly increases at low P: attributed to the increase of t

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 2. Resistivity measurements V V I I c a b transverse I // b P < 8kbar 1D regim : Mott localisation    =  0 exp (   /T ) I // c I I V V P > 8kbar 1D-2D crossover  // metallic and   metallic for T<T* T MI = 20K  // (T)   (T)

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 3. First phase diagram CO Phase diagram similar to 1D materials such as (TMTTF) 2 X family

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 4. Dielectric constant measurements Low P : 2 peaks in  ’ => Charge Ordering, why 2 peaks? High P : peak in  ’ at the metal-insulator transition : insulating state = CO Curie law at the transition

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 5. Second phase diagram H.Seo, C.Hotta, H.Fukuyama, Chemical Reviews (2004) H.Seo, J.Merino, H.Yoshioka, M.Ogata,JPSJ 75 (2006),

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 6. Thermopower (TEP) Low P : anomaly in TEP more or less related to 1st peak in dielectric constant. Change of sign of TEP more or less related to 2 nd peak in dielectric constant. High P : anomaly in TEP exactly at the metal-insulator transition. No change of the sign of the TEP. T>T MI: linear in T

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 7. Conclusions CO extends widely : expected for a weakly dimerized system (or non dimerized at all) CO manifests in dielectric constant and thermopower measurements No signatures of superconductivity Phase diagram close to (DI-DCNQ) 2 Ag which indicates a unity in the phase diagram of weakly or non dimerized systems

ECRYS-2008, 27 August 2008  -(EDT-TTF-CONMe 2 ) 2 Br 7. Conclusions (DI-DCNQI) 2 Ag T. Itou et al., Phys. Rev. B 72, (2005) (EDT-TTF-CONMe 2 ) 2 Br

ECRYS-2008, 27 August 2008 Conclusions Study of new families of ¼ filled (or very weakly dimerized) systems with NMR, resistivity, dielectric constant and thermopower. CO extends widely which is expected for a weakly dimerized system (or non dimerized at all) No signatures of superconductivity : is it intrinsic or related to disorder (CO fluctuations)? Phase diagram of  -(EDT-TTF-CONMe 2 ) 2 Br close to (DI-DCNQ) 2 Ag which indicates a unity in the phase diagram of weakly or non dimerized systems Open questions : why a phase repulsion between the 2 CO states? why 2 peaks in dielectric constant ?

ECRYS-2008, 27 August 2008 Acknowledgments D. JéromeLPS Orsay P. Foury-Leylekian, J.-P. Pouget C. Mézière, P. BatailCIMA Angers M. FourmiguéISC Rennes €€€ :

ECRYS-2008, 27 August 2008