Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam

Slides:



Advertisements
Similar presentations
DEB theory as a Paradigm for the Integration of Thermodynamics with the Natural and the Social Sciences Tiago Domingos Tania Sousa Environment and Energy.
Advertisements

DEB applications from eco- toxicity to fisheries and beyond Bas Kooijman Dept theoretical biology VU University Amsterdam
 Dynamic Energy Budget Theory Tânia Sousa with contributions from :Bas Kooijman.
Laure Pecquerie Laboratoire des Sciences de l’Environnement Marin UMR LEMAR, IRD 21 st -22 nd April 2015, DEB Course 2015, Marseille.
Some recent developments in DEB research Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Mass balance 4.3 minerals carbon dioxide water dioxygen nitrogen-waste organics food structure reserve product flux of compound i chemical index for element.
Innovations by DEB theory to understand metabolic organisation Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Scaling relationships based on partition coefficients & body size have similarities & interactions Bas Kooijman Dept theoretical biology Vrije Universiteit.
Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.
Mechanistic modeling of zebrafish metabolism in relationship to food level and the presence of a toxicant (uranium) S. Augustine B.Gagnaire C. Adam-Guillermin.
Energetics & Stoichiometry of plankton production Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Introduction to DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Oslo 2012/02/09-10.
The effect of food composition on feeding, growth and reproduction of bivalves Sofia SARAIVA 1,3, Jaap VAN DER MEER 1,2, S.A.L.M. KOOIJMAN 2, T. SOUSA.
Reserve dynamics & social interactions in feeding Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Modelling & model criteria Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam master course WTC.
Tjalling Jager Dept. Theoretical Biology How to simplify biology to interpret effects of stressors.
Applications of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Iraklion, 2010/05/12.
The application of DEB theory to fish energetics Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
1-  maturity maintenance maturity offspring maturation reproduction Basic DEB scheme foodfaeces assimilation reserve feeding defecation structure somatic.
Lecture 3 Implications of theory. Mass & energy balance The standard DEB model specifies fluxes of 4 organic compounds food, faeces, stucture (growth),
Lecture 4 Covariation of parameter values. Scales of life 8a Life span 10 log a Volume 10 log m 3 earth whale bacterium water molecule life on earth whale.
Dynamische Energie Budget theorie Bas Kooijman Afd Theoretische Biologie Vrije Universiteit Amsterdam
Metabolic Organisation has a formal basis Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
DEB theory as framework for quantifying effects of noise on cetaceans Bas Kooijman Dept Theoretical Biology Washington, 2004/03/05.
Covariation & estimation of pars intro to practical part of DEB course 2011 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Elke Zimmer, PhD-Project DEB-1 Supervisors: Tjalling Jager, Bas Kooijman (VU Amsterdam) Co-Supervisor: Virginie Ducrot (INRA, Rennes) Elke Zimmer CREAM.
Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Current research on DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Introduction to DEB theory & applications in fishery sciences
environmental conditions
DEB-based body mass spectra
Population consequences of individual-level mechanisms through dynamic energy budgets Tjalling Jager Dept. Theoretical Biology.
1-  maturity maintenance maturity offspring maturation reproduction Basic DEB scheme foodfaeces assimilation reserve feeding defecation structure somatic.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam The dynamics of isotopes.
Modelkey: VUA-TB, WP Effect-3 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Life history events.
Application of DEB theory to a particular organism in (hopefully somewhat) practical terms Laure Pecquerie University of California Santa Barbara.
Lecture 3 Implications & extensions. Mass & energy balance The standard DEB model specifies fluxes of 4 organic compounds food, faeces, structure (growth),
The use of models in biology Bas Kooijman Afdeling Theoretische Biologie Vrije Universiteit Amsterdam Eindhoven,
“DEBtox”, a brief history and extension to mixtures and plants Tjalling Jager Dept. Theoretical Biology.
Standard DEB model summary of tele-part of DEB course 2011 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam DEB theory & ecotox.
Lecture 2 Standard DEB model. 1-  maturity maintenance maturity offspring maturation reproduction Standard DEB model foodfaeces assimilation reserve.
Effects of combined stressors Tjalling Jager, Bas Kooijman Dept. Theoretical Biology From individuals to population using dynamic energy budgets.
Testing models against data Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam master course WTC.
Making sense of sub-lethal mixture effects Tjalling Jager, Tine Vandenbrouck, Jan Baas, Wim De Coen, Bas Kooijman.
From developmental energetics to effects of toxicants: a story born of zebrafish and uranium S. Augustine B.Gagnaire C. Adam-Guillermin S. A. L. M. Kooijman.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam What the egg can tell.
Correlating impacts on life history aspects Bas Kooijman Dept of Theoretical Biology Vrije Universiteit, Amsterdam Praha,
Dynamic Energy Budget Theory - V Tânia Sousa with contributions from :Bas Kooijman with contributions from :Bas Kooijman.
Dynamic Energy Budget theory 1 Basic Concepts 2 Standard DEB modelStandard DEB model 3 Metabolism 4 Univariate DEB models 5 Multivariate DEB models 6 Effects.
Theoretical Ecology course 2015 DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam
What is DEB theory? Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Melbourne 2012/08/06.
DEB course 2013 summary of tele-part Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Texel 2013/04/15.
Mass aspects & scaling Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Melbourne 2012/08/06 Contents.
Dina Lika Dept of Biology TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA The covariation method of estimation Add_my_pet.
 Dynamic Energy Budget Theory - I Tânia Sousa with contributions from :Bas Kooijman.
Art of modelling DEB course 2013 Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Texel, 2013/04/16.
 Dynamic Energy Budget Theory - I Tânia Sousa with contributions from :Bas Kooijman.
Energy Dynamics. How can we measure energy flow? Indirectly with biomass Where does the energy captured go? – Reproduction – Cellular respiration.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Add_my_pet a data and.
Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Estimating DEB parameters.
Dina Lika Dept of Biology TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA Covariation of parameter values UNIVERSITY.
 Dynamic Energy Budget Theory Tânia Sousa with contributions from : Gonçalo Marques and Bas Kooijman.
Dynamic Energy Budget Theory
The DEB-theory and its applications in Ecotoxicology
Olivier Maury, Olivier Aumont, Jean-Christophe Poggiale
Theoretical Ecology course 2012 DEB theory
The scaling of metabolism in the perspective of DEB theory
Presentation transcript:

Estimation of DEB parameters Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Marseille, 2007/01/18

Auxiliary theory Quantities that are easy to measure (e.g. respiration, body weight) have contributions form several processes  they are not suitable as variables in explenatory models Variables in explenatory models are not directly measurable  we need auxiliary theory to link core theory to measurements Standard DEB model : isomorph with 1 reserve & 1 structure that feeds on 1 type of food

DEB parameters primary parameters determine food uptake changes of state variables (reserve, maturity, structure) compound parameters: functions of primary parameters composition parameters food, reserve, structure, products (feaces, N-waste) thermodynamic parameters free energies (chemical potentials) entropies dissipating heat

Reserve & maturity: hidden Maturity: information, not mass or energy quantified as cumulated mass of reserve that is invested Scale reserve & maturity

Growth at constant food 3.7 time, dultimate length, mm length, mm time Length L. at birth ultimate L. von Bert growth rate energy conductance maint. rate coefficient shape coefficient Von Bert growth rate -1, d Von Bertalanffy growth curve:

measured quantities  primary pars Standard DEB model (isomorph, 1 reserve, 1 structure) reserve & maturity: hidden variables measured for 2 food levels primary parameters

One-sample case

Two-sample case: D. magna 20°C Optimality of life history parameters?

Primary  thermodynamic pars Given primary parameters: get composition parameters get mass fluxes (respiration) get entropies, free energies

Reserve vs structure Kcal/g wet weight cumulative fraction time, dtime of reserve depletion, d protein lipid carbohydrate Data from Whyte J.N.C., Englar J.R. & Carswell (1990). Aquaculture 90: Body mass in starving pacific oyster Crassooestrea gigas at 10°C reserve structure

Reserve E vs structure V

100 g wet weighttotalproteinlipidcarbohydrate  C M C0, kcal  C J CM, kcal/d  C, kJ/C-mol M C0, C-mol J CM, mmol/d M CE =M E, mol/mol M CV =M V, mol/molt 0 = 200 d M CV =M V, mol/molt 0 = 400 d M CV =M V, mol/molt 0 = 600 d