Bayesian networks Chapter 14 Section 1 – 2.

Slides:



Advertisements
Similar presentations
Bayesian networks Chapter 14 Section 1 – 2. Outline Syntax Semantics Exact computation.
Advertisements

Probabilistic Reasoning Bayesian Belief Networks Constructing Bayesian Networks Representing Conditional Distributions Summary.
BAYESIAN NETWORKS. Bayesian Network Motivation  We want a representation and reasoning system that is based on conditional independence  Compact yet.
1 Bayesian Networks Slides from multiple sources: Weng-Keen Wong, School of Electrical Engineering and Computer Science, Oregon State University.
Identifying Conditional Independencies in Bayes Nets Lecture 4.
1 22c:145 Artificial Intelligence Bayesian Networks Reading: Ch 14. Russell & Norvig.
Bayesian Networks Chapter 14 Section 1, 2, 4. Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact.
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) March, 16, 2009.
Review: Bayesian learning and inference
Bayesian Networks. Motivation The conditional independence assumption made by naïve Bayes classifiers may seem to rigid, especially for classification.
Artificial Intelligence Probabilistic reasoning Fall 2008 professor: Luigi Ceccaroni.
Probabilistic Reasoning Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 14 (14.1, 14.2, 14.3, 14.4) Capturing uncertain knowledge Probabilistic.
1 Data Mining with Bayesian Networks (I) Instructor: Qiang Yang Hong Kong University of Science and Technology Thanks: Dan Weld, Eibe.
CSCI 5582 Fall 2006 CSCI 5582 Artificial Intelligence Lecture 14 Jim Martin.
Bayesian Belief Networks
Bayesian Belief Network. The decomposition of large probabilistic domains into weakly connected subsets via conditional independence is one of the most.
University College Cork (Ireland) Department of Civil and Environmental Engineering Course: Engineering Artificial Intelligence Dr. Radu Marinescu Lecture.
5/25/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005.
Bayesian Reasoning. Tax Data – Naive Bayes Classify: (_, No, Married, 95K, ?)
Bayesian Networks Russell and Norvig: Chapter 14 CMCS421 Fall 2006.
Bayesian networks More commonly called graphical models A way to depict conditional independence relationships between random variables A compact specification.
Probabilistic Reasoning
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Advanced Artificial Intelligence
Bayesian Networks Material used 1 Random variables
Artificial Intelligence CS 165A Tuesday, November 27, 2007  Probabilistic Reasoning (Ch 14)
Bayesian networks Chapter 14. Outline Syntax Semantics.
Bayesian Networks Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell,
Bayesian networks Chapter 14 Section 1 – 2. Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact.
An Introduction to Artificial Intelligence Chapter 13 & : Uncertainty & Bayesian Networks Ramin Halavati
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes March 13, 2012.
Probabilistic Belief States and Bayesian Networks (Where we exploit the sparseness of direct interactions among components of a world) R&N: Chap. 14, Sect.
Bayesian networks. Motivation We saw that the full joint probability can be used to answer any question about the domain, but can become intractable as.
1 Chapter 14 Probabilistic Reasoning. 2 Outline Syntax of Bayesian networks Semantics of Bayesian networks Efficient representation of conditional distributions.
2 Syntax of Bayesian networks Semantics of Bayesian networks Efficient representation of conditional distributions Exact inference by enumeration Exact.
Uncertainty Chapter 13. Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes' Rule.
1 Monte Carlo Artificial Intelligence: Bayesian Networks.
An Introduction to Artificial Intelligence Chapter 13 & : Uncertainty & Bayesian Networks Ramin Halavati
Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)? Example.
Probabilistic Reasoning [Ch. 14] Bayes Networks – Part 1 ◦Syntax ◦Semantics ◦Parameterized distributions Inference – Part2 ◦Exact inference by enumeration.
Marginalization & Conditioning Marginalization (summing out): for any sets of variables Y and Z: Conditioning(variant of marginalization):
Bayesian Networks CSE 473. © D. Weld and D. Fox 2 Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential.
Review: Bayesian inference  A general scenario:  Query variables: X  Evidence (observed) variables and their values: E = e  Unobserved variables: Y.
CPSC 7373: Artificial Intelligence Lecture 5: Probabilistic Inference Jiang Bian, Fall 2012 University of Arkansas at Little Rock.
1 Probability FOL fails for a domain due to: –Laziness: too much to list the complete set of rules, too hard to use the enormous rules that result –Theoretical.
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) Nov, 13, 2013.
Bayesian networks Chapter 14 Slide Set 2. Constructing Bayesian networks 1. Choose an ordering of variables X 1, …,X n 2. For i = 1 to n –add X i to the.
PROBABILISTIC REASONING Heng Ji 04/05, 04/08, 2016.
Chapter 12. Probability Reasoning Fall 2013 Comp3710 Artificial Intelligence Computing Science Thompson Rivers University.
Web-Mining Agents Data Mining Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Karsten Martiny (Übungen)
Introduction to Artificial Intelligence – Unit 7 Probabilistic Reasoning Course The Hebrew University of Jerusalem School of Engineering and Computer.
A Brief Introduction to Bayesian networks
Another look at Bayesian inference
Reasoning Under Uncertainty: Belief Networks
CS 2750: Machine Learning Directed Graphical Models
Bayesian Networks Chapter 14 Section 1, 2, 4.
Bayesian networks Chapter 14 Section 1 – 2.
Presented By S.Yamuna AP/CSE
Web-Mining Agents Data Mining
Qian Liu CSE spring University of Pennsylvania
Read R&N Ch Next lecture: Read R&N
Probabilistic Reasoning; Network-based reasoning
Structure and Semantics of BN
CS 188: Artificial Intelligence Fall 2007
Structure and Semantics of BN
Bayesian Decision Theory
Bayesian networks Chapter 14 Section 1 – 2.
Probabilistic Reasoning
Read R&N Ch Next lecture: Read R&N
Presentation transcript:

Bayesian networks Chapter 14 Section 1 – 2

Outline Syntax Semantics

Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions Syntax: a set of nodes, one per variable a directed, acyclic graph (link ≈ "directly influences") a conditional distribution for each node given its parents: P (Xi | Parents (Xi)) In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over Xi for each combination of parent values

Example Topology of network encodes conditional independence assertions: Weather is independent of the other variables Toothache and Catch are conditionally independent given Cavity

Example I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar? Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge: A burglar can set the alarm off An earthquake can set the alarm off The alarm can cause Mary to call The alarm can cause John to call

Example contd.

Compactness A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of parent values Each row requires one number p for Xi = true (the number for Xi = false is just 1-p) If each variable has no more than k parents, the complete network requires O(n · 2k) numbers I.e., grows linearly with n, vs. O(2n) for the full joint distribution For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)

Semantics The full joint distribution is defined as the product of the local conditional distributions: P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) e.g., P(j  m  a  b  e) = P (j | a) P (m | a) P (a | b, e) P (b) P (e) n

Constructing Bayesian networks 1. Choose an ordering of variables X1, … ,Xn 2. For i = 1 to n add Xi to the network select parents from X1, … ,Xi-1 such that P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) This choice of parents guarantees: (chain rule) (by construction) n n

Example Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)?

Example Suppose we choose the ordering M, J, A, B, E No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?

Example Suppose we choose the ordering M, J, A, B, E No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? P(B | A, J, M) = P(B)?

Example Suppose we choose the ordering M, J, A, B, E No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A ,J, M) = P(E | A)? P(E | B, A, J, M) = P(E | A, B)?

Example Suppose we choose the ordering M, J, A, B, E No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A ,J, M) = P(E | A)? No P(E | B, A, J, M) = P(E | A, B)? Yes

Example contd. Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!) Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Summary Bayesian networks provide a natural representation for (causally induced) conditional independence Topology + CPTs = compact representation of joint distribution Generally easy for domain experts to construct