SHIELDING STUDIES FOR THE MUON COLLIDER TARGET NICHOLAS SOUCHLAS BNL Nov 30, 2010 ‏ 1.

Slides:



Advertisements
Similar presentations
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 1. N. Souchlas BNL (Oct. 5, 2010)
Advertisements

IDS120j WITH/WITHOUT GAPS SH#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS Nicholas Souchlas, PBL (3/14/2012) 1.
Magnetic Configuration of the Muon Collider/ Neutrino Factory Target System Hisham Kamal Sayed, *1 H.G Kirk, 1 K.T. McDonald 2 1 Brookhaven National Laboratory,
Neutrino Factory Target Cryostat Review Van Graves Cale Caldwell IDS-NF Phone Meeting August 10, 2010.
Particle Production of a Carbon/Mercury Target System for the Intensity Frontier X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Spring.
Target & Capture for PRISM Koji Yoshimura On behalf of PRISM Target Group Institute of Particle and Nuclear Science High Energy Accelerator Research Organization.
Operated by Brookhaven Science Associates for the U.S. Department of Energy A Pion Production and Capture System for a 4 MW Target Station X. Ding, D.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
IDS120h: Be WINDOW DETAILED CALCULATION, SHIELDING VESSELS, RESULTS FOR DIFFERENT GLOBAL STEPS Nicholas Souchlas (9/20/2011) 1.
Energy Deposition of 4-MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Meeting, Feb. 9, 2010.
MC/NF TARGET SHIELDING STUDIES. NICHOLAS SOUCHLAS (10/29/2010)‏ 1.
Preliminary Analysis of the Target System Magnets 1.Version with a 6-T copper magnet insert 2.Version with a 6-T high-temperature superconductor insert.
KT McDonald Muon Collider 2011 June 28, The Target System Baseline K. McDonald Princeton U. (June 28, 2011) Muon Collider 2011 Telluride, CO More.
Above: Energy deposition in the superconducting magnet and the tungsten-carbide shield inside them. Approximately 2.4 MW must be dissipated in the shield.
May 17-19, 2000 Catalina Island, CA Neutrino Factory and Muon Collider Collaboration Meeting 1 Target Support Facility for a Solid Target Neutrino Production.
Energy Deposition of 4MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Mar. 9, 2010 (Update of talk on Feb. 9, 2010)
Harold G. Kirk Brookhaven National Laboratory Target System Update IDS-NF Plenary Meeting Arlington, VA October 18, 2011.
Harold G. Kirk Brookhaven National Laboratory Target Baseline IDS-NF Plenary CERN March 23-24, 2009.
1Managed by UT-Battelle for the U.S. Department of Energy NMFCC Friday Meeting 10 Apr 2009 Neutrino Factory Nozzle Layouts V.B. Graves NFMCC Friday Meeting.
IDS-NF Target Studies H. Kirk (BNL) July 8, 2009.
1 Comparison of Power Depositions X. Ding, D. B. Cline, UCLA H. Kirk, J. S. Berg, BNL Collaboration Meeting July 2, 2010.
Comparison of Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Jun. 29, 2010.
Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Apr. 20, 2010.
Above: Power deposition in the superconducting magnets and the tungsten-carbide + water shield inside them, according to a FLUKA simulation Approximately.
Above: On-axis field profiles of resistive, superconducting and all magnets, and bore-tube radius r = 7.5 (B/20T) −½ cm. Above: Hoop strain ε θ in resistive.
Operated by Brookhaven Science Associates for the U.S. Department of Energy Optimized Parameters for a Mercury Jet Target X. Ding, D. Cline, UCLA, Los.
Managed by UT-Battelle for the Department of Energy Review of NFMCC Studies 1 and 2: Target Support Facilities V.B. Graves Meeting on High Power Targets.
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 3. NICHOLAS SOUCHLAS (10/28/2010)‏
The Front End MAP Review Fermi National Accelerator Lab August 24-26, 2010 Harold G. Kirk Brookhaven National Laboratory.
IDS120h POWER DEPOSITION AND Hg POOL STUDIES Nicholas Souchlas (7/26/2011) 1.
STUDY II: m1507 vs. m1510 IDS120f: m1507/MCNP vs. M1510/MCNP vs. FLUKA IDS120f vs. IDS20g GEOMETRY IDS90f: B10/B11 SHIELDING RING(S) STUDIES Nicholas Souchlas.
Target and Absorbers L2 Manager: K McDonald, Princeton U March xx, 2013 Presenter’s Name | DOE Mini-Review of MAP (FNAL, March 4-6, 2013)1 Mission Target:
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 1..
Meson Productions for Target System with GA/HG Jet and IDS120h Configuration X. Ding (Presenter), D. Cline, UCLA H. Kirk, J.S. Berg, BNL Muon Accelerator.
KT McDonald MAP Spring Meeting May 30, Target System Concept for a Muon Collider/Neutrino Factory K.T. McDonald Princeton University (May 28, 2014)
IDS120j WITHOUT GAPS AND WITH MAXIMUM SIZE GAPS ( aka ''NIGHTMARE'' CASE SCENARIO ) SC#4, SC#7 AZIMUTHAL DPD DISTRIBUTION ANALYSIS. Nicholas Souchlas,
K. McDonald Target Studies Meeting June 29, Materials for the Target System Internal Shield K. McDonald Princeton U. (June 27, 2010) Iron Plug Proton.
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS EFFECTS OF Be WINDOW WATER.
SHIELDING STUDIES FOR THE MUON COLLIDER TARGET. (From STUDY II to IDS120f geometries) NICHOLAS SOUCHLAS (BNL)‏ ‏ 1.
KT McDonald MAP Tech Board Meeting Oct 20, The MAP Targetry Program in FY11 and FY12 K. McDonald Princeton U. (Oct 20, 2011) MAP Technical Board.
DEPOSITED POWER STUDIES FOR THE MC/NF TARGET STATION. Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012) 1 DEPOSITED POWER STUDIES FOR THE MC/NF TARGET.
1 Energy Deposition of 4MW Beam Power in a Mercury Jet Target X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL The International Design Study for the.
IDS120j WITH GAPS SC#3 AZIMUTHAL DPD DISTRIBUTION ANALYSIS WITH MAX GAPS SC#3, SC#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS, DP AND SC TOTAL DP WITH VARYING.
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS. BP#1(STST/W), SH#1, BeWindow,SC#8.
KT McDonald MAP Front End Meeting March 3, Finalizing the C- and Hg-Target Configurations for 6.75-GeV Proton Beams Present studies are for a carbon.
IDS120j WITHOUT RESISTIVE MAGNETS: NEW Hg MODULE mars1510 ( DESKTOP ) vs. mars1512 ( PRINCETON CLUSTER ) Nicholas Souchlas, PBL (3/28/2012) 1.
K. McDonald MAP Technical Board Meeting Nov 1, FY11 Target System Budget Proposal K. McDonald Princeton U. (November 1, 2010)
Particle Production of Carbon Target with 20Tto2T5m Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies April 3, /3/14.
Beam Dump for Carbon Target with IDS120h Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies Jan. 24, /24/14.
Particle Production with Carbon Target and IDS120j Configuration at 3 GeV (update) X. Ding, UCLA Target Studies Nov. 14, /14/13.
Kinetic Energy Spectra of pi +, pi -, mu +, mu - and sum of all from the 20to4T5m Configuration X. Ding Front End Meeting June 23,
Meson Production of Carbon Target at 3 GeV X. Ding, UCLA Target Studies 17/18/13.
IDS120j WITHOUT RESISTIVE MAGNETS ( 20 cm GAPS AND 15.8 g/cc W BEADS ) AZIMUTHAL DPD DISTRIBUTION STUDIES FOR: BP#1, SH#1, SHVS#1/LFL, SC#1+SC#2, BeWind.
Multiprocessing/MARS15(2012)/Princeton Cluster (IDS120j w/t Resistive Magnets: New Hg Module) X. Ding UCLA (4/11/2013)
IDS120j WITHOUT RESISTIVE MAGNETS MODIFYING Hg MODULE Nicholas Souchlas, PBL (11/1/2012) 1.
IDS120j WITH AND WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGION, III ( 20 cm GAPS BETWEEN CRYOSTATS ) Nicholas Souchlas, PBL (9/4/2012)
Meson Production at Low Proton Beam Energy (Update) X. Ding, UCLA Target Studies May 9, /9/113.
IDS120i GEOMETRY. SIMULATIONS FOR 60%W+40%He SHIELDING WITH STST SHIELDING VESSELS. Hg vs. Ga DEPOSITED POWER DISTRIBUTION. (using Ding's optimized parameters)
IDS120j WITHOUT RESISTIVE MAGNETS SEMGENTATION STUDIES FOR BEAM PIPE BEYOND FIRST CRYOSTAT ( 20 cm GAPS AND 15.8 g/cc W BEADS ) Nicholas Souchlas, PBL.
IDS120j WITHOUT RESISTIVE MAGNETS SEMGENTATION STUDIES FOR BP#2 WITHIN FIRST CRYOSTAT AND RIGHT FLANGE OF Hg POOL INNER VESSEL ( 20 cm GAPS AND 15.8 g/cc.
Ids120h_side. ids120h_top ids120h_iso ids120h_end.
Horn and Solenoid options in Neutrino Factory M. Yoshida, Osaka Univ. NuFact08, Valencia June 30th, A brief review of pion capture scheme in NuFact,
BNL solenoid capture workshop: magnet challenges are not trivial Summarized by Tengming Shen
SHIELDING STUDIES FOR IDS80 (NO IRON PLUG/YOKE), ADDING SHIELDING IN 75 TO 80 cm (WC/H 2 O, B, Cd). NICHOLAS SOUCHLAS (BNL) Dec. 14, 2010‏ ‏ 1.
ENERGY FLOW AND DEPOSITION IN A 4-MW MUON-COLLIDER TARGET SYSTEM
IDS120h: PROTON P0-P14 TRAJECTORY FOOTPRINT
Horn and Solenoid Options in Neutrino Factory
IDS120j WITHOUT RESISTIVE MAGNETS: NEW Hg MODULE
1 Nicholas Souchlas, PBL (11/15/2011)
1 Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012)
Presentation transcript:

SHIELDING STUDIES FOR THE MUON COLLIDER TARGET NICHOLAS SOUCHLAS BNL Nov 30, 2010 ‏ 1

MUON COLLIDER TARGET STATION COMPONENTS 1. PROJECTILES (PROTON BEAM). 2. TARGET (MERCURY JET). 3. SUPERCONDUCTING COILS (SC) FOR UP TO 14 T MAGNETIC FIELD AROUND INTERACTION AREA (NbSn, NbTi). 4. RESISTIVE COILS FOR ADDITIONAL 6 T MAGNETIC FIELD SO THAT B~20 T AROUND THE INTERACTION AREA. 5. BEAM PIPE(STST Stainless Steel). 6. CRYOGENIC COOLING FOR THE SC SOLENOIDS. 7. MERCURY COLLECTING TANK AND REMOVAL SYSTEM. 8. SHIELDING CONFIGURATIONS (WC BEADS+H 2 O). 2

REQUIREMENTS/LIMITATIONS PROTON BEAM AND MERCURY JET PARAMETERS ARE OPTIMIZED TO PRODUCE THE MAXIMUM NUMBER OF MUONS. LIMITATIONS :MAGNETIC FIELD VALUES AND VARIATION DETERMINES IN PART THE SUPERCONDUCTING COILS CONFIGURATION (GEOMETRY), AND DIMENSIONS. :CRYOGENIC COOLING EXPENSIVE, SO AS LITTLE ENERGY AS POSSIBLE SHOULD BE DEPOSITED IN THE SOLENOIDS. :AVOID QUENCHING, PEAK VALUES OF DEPOSITED ENERGY BELOW A LIMIT. :AVOID SOLENOIDS MATERIAL LATTICE/STRUCTURAL DAMAGE FROM IRRADIATION PARTICLES. :SOLENOIDS STRESS FORCES ALSO BELOW A LIMIT, LIMITS ON SIZE/DIMENSIONS OF SOLENOIDS. :SPACE FOR SHIELDING MATERIAL IS LIMITED. CHOOSE A CONFIGURATION/GEOMETRY THAT HAS THE RIGHT BALANCE BETWEEN AVAILABLE SPACE FOR SHIELDING AND VIABLE SOLENOIDS SIZE. RESULTS OF DEPOSITED ENERGY AND PEAK VALUES FOR THREE DIFFERENT GEOMETRIES WILL BE PRESENTED. 3

Energy deposition from MARS, MARS+MCNP codes. STANDARD (STUDY II) GEOMETRY. STANDARD SHIELDING (80%WC+20% H 2 O). 4MW proton beam. Initially E=24 GeV, GAUSSIAN PROFILE: σ x =σ y =0.15 cm. Now E=8 GeV, GAUSSIAN PROFILE: σ x =σ y =0.12 cm. 4

STANDARD (STUDY II) SOLENOID GEOMETRY, 13 SC SC#1 -120<z<57.8 cm R in =63.3 cm R out =127.8 cm SC#2 67.8<z<140.7 cm R in =68.6 cm R out =101.1 cm SC# cm (TOTAL # SC=13)‏ 5

DEPOSITED ENERGY WITH 24 GeV AND 8 GeV BEAM (MARS, MARS+MCNP). From 24 GeV to 8 GeV, and from a more detail treatment of low energy neutrons: from ~14 kW to ~38 kW power in SC1 and from ~29 kW to 50 kW in total power. 24 GeV 8 GeV 6

OFF/ON SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS. SAME RESULTS FOR SC#2-13 7

OFF/ON SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS. High energy neutrons are a problem even with shielding material. 8

Within shielding thickness restrictions, best effect is achieved by maximizing content in high Z material. For WC beads and H 2 O, from random sphere packing analysis x~

REPLACING RESISTIVE MAGNET WITH SHIELDING MATERIAL (80%WC+20% H 2 O) REDUCES DEPOSITED ENERGY IN SC#1 FROM ~38 kW TO ~13 kW (A FACTOR OF ~3). (MARS+MCNP WITH NEUTRON ENERGY CUTOFF OF MeV) 10

Energy deposition from MARS+MCNP codes. IDS80 GEOMETRY WITH IRON PLUG (TO PROVIDE MORE SPACE FOR SHIELDING ESPECIALLY FOR SOLENOIDS AROUND THE INTERACTION AREA). SHIELDING (60%WC+40% H 2 O). 4MW proton beam. PROTONS ENERGY E=8 GeV. GAUSSIAN PROFILE: σ x =σ y =0.12 cm. 11

STANDARD (OLD) VS. IDS80 (NEW) SOLENOID GEOMETRY (IDS80 WITH 60%WC+40% H2O SHIELDING) ‏ From 63.3 cm (SC#1) to 80 cm (SC#1-10) inner radius for solenoids around target area: more space for shielding. NEW: SC# <z<345 cm R in =80.0 cm R out =100 (1-4)/115 (5)/97 (6)/93(7-9)/87(10)cm SC# cm R out =82.0-->54 cm SC# <z<1795 cm R in =45 cm R out =48 cm (TOTAL # SC=26)‏ 12

MARS+MCNP(NEUTRON ENERGY CUTOFF MeV) Study II geometry with 80%WC+20% H 2 O shielding----> Enhanced shielding case (IDS80), with 60%WC+40% H 2 O shielding: SC#1: 37.6 kW >SC#1-5: 2.4 kW SC#1-13: 50.0 kW >SC#1-26: 3.4 kW 13

DETAIL STUDY OF IDS80 WITH IRON PLUG (MARS+MCNP, MeV NEUTRON ENERGY)‏ RS#1 RS#2 RS#3 BP#1BP#2 BP#3 SH#1 SH#2 SH#3 SH#4 SC#1-5 SC#6-10SC#11-15SC#

ENERGY DEPOSITED IN RESISTIVE COILS (RS#), BEAM PIPE (BP#), IRON PLUG (IP#). ENERGY DEPOSITED IN SC SOLENOIDS (SC#), SHIELDING (SH#). 15

ENERGY DEPOSITED IN OTHER PARTS AND TOTALS. ABOUT 80% OF THE 4 MW IS ACCOUNDED FOR. 16

Energy deposition from MARS+MCNP codes ( MeV NEUTRON ENERGY CUTOFF). IDS80 GEOMETRY WITHOUT IRON PLUG AND YOKE MATERIAL (TO ACCOMODATE ACCESS TO DIFFERENT PARTS OF THE TARGET STATION). SHIELDING (60%WC+40% H 2 O). 4MW proton beam. PROTONS ENERGY E=8 GeV. GAUSSIAN PROFILE: σ x =σ y =0.12 cm. 17

IDS80 GEOMETRY WITH AND WITHOUT IRON PLUG AND YOKE. NEW: SC# <z<345 cm R in =80.0 cm R out =140 (1)/160 (2,3)/115 (5-6)/108(7) cm(NbSn) SC# <z<667 cm R in =72/63/54 cm R out =97.0/83/69 cm (NbTi)‏ SC# <z<1090 cm R in =45 cm R out =51 cm (NbTi) SC# <z<1090 cm R in =45 cm R out =49 cm (NbTi) (TOTAL # SC=21)‏ 18

ENERGY DEPOSITED IN SC SOLENOIDS (SC#), SHIELDING (SH#). ENERGY DEPOSITED IN RESISITVE SOLENOIDS (RS#), BEAM PIPE(BP#). 19

ENERGY DEPOSITED IN OTHER PARTS AND TOTALS: WITH IRON PLUG WITHOUT IRON PLUG/YOKE SHIELDING MATERIAL, RESISITVE COILS, BEAM PIPE, Be WINDOW, MERCURY TARGET AND POOL: ABOUT SAME ENERGY FOR BOTH CASES. 20

STUDY II GEOMETRY 3D ROOT PLOT OF DEPOSITED ENERGY FOR FIRST TWO SUPER-CONDUCTING SOLENOID:5.5 mW/gr ~(64.5<r<67.0 cm, -20.0<z<32.0 cm) 21

STUDY II IDS80 IRON PLUGIDS80 NO IRON PLUG STUDY II PEAK VALUE: ~(5.5 mW/gr in -20.0<z<32.0 cm, 64.5<z<67 cm) SC#1 IDS80 PEAK VALUE: ~(0.36 mW/gr in -42.0<z<9 cm, 80<r<81.2 cm, 82.2<r<84.5 cm) SC#4 IDS80 NO IRON PLUG PEAK VALUE: ~(0.36 mW/gr -19.0<z<44.0 cm, 80.5<r<81.0 cm) SC#3 22

Hot spot at z ~ 900 cm may be due to low level of mercury in the pool. IDS80d, no iron plug 23

CONCLUSIONS. Low energy neutrons require detail study provided by MCNP. High energy neutrons are a problem even with the shielding material. Resistive coil significantly reduces the ability for shielding SC1/first group of SC solenoids around interaction region. High Z material is required and as much as possible. Additional space for shielding material necessary for solenoids especially around the interaction area (IDS80 GEOMETRY WITH IRON PLUG). Additional space to accommodate access to different parts of the target station needed (IDS80 GEOMETRY WITHOUT IRON PLUG/YOKE). STUDY II geometry~ 50 kW in SC solenoids, 5.5 mW/gr peak values. IDS80 geometries~ 3-4 kW in SC solenoids, 0.35 mW/gr peak values. 24

BACKUP SLIDES 25

NO SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS. 26

27

80%WC+20%H 2 O SHIELDING, DIFFERENT NEUTRON ENERGY CUTOFFS. 28

29

30

31

ENERGY DEPOSITED FOR DIFFERENT COMPOSITIONS OF THE SHIELDING ( x WC+(1-x) H 2 O )‏ 32

DEPOSITED ENERGY BY REMOVING THE MAGNETIC FIELD, USING TWO WAYS: (4=F, B≠0) (4=T, B=0) 33

DEPOSITED ENERGY WHEN RESISITIVE COIL IS REPLACED BY SHIELDING MATERIAL. 34

DEPOSITED ENERGY WITH 24 GeV BEAM. NOTICE: NEW GEOMETRY RESULTS ARE WITHOUT OPTIMIZING PROTON BEAM AND MERCURY TARGET PARAMETERS. 35