Copyright © 2009 Pearson Education, Inc. Lecture 5 - Capacitance Capacitors & Dielectrics.

Slides:



Advertisements
Similar presentations
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Advertisements

© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 24 Capacitance, dielectrics and electric energy storage
Fall 2008Physics 231Lecture 4-1 Capacitance and Dielectrics.
Copyright © 2009 Pearson Education, Inc. Dielectrics.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 17 Electric Potential.
Electric Potential Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries,
Lecture 4 Capacitance and Capacitors Chapter 16.6  Outline Definition of Capacitance Simple Capacitors Combinations of Capacitors Capacitors with.
Lecture 8 Capacitance and capacitors
Application – Xerographic Copiers
Electric Potential AP Physics: M. Blachly Textbook: 17:1-3.
I Chapter 25 Electric Currents and Resistance HW7: Due Monday, March 30; Chap.24: Pb.32,Pb.35,Pb.59 Chap.25: Pb.19,Pb.25,Pb.31.
Tuesday, Oct. 4, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #11 Tuesday, Oct. 4, 2011 Dr. Jaehoon Yu Capacitors in Series.
Bright Storm on Capacitors (Start to minute 7:10).
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
Dr. Jie ZouPHY Chapter 26 Capacitance and Dielectrics.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Copyright © 2009 Pearson Education, Inc. Admin: No assignment this week Discussion sections run as usual No labs in the week after spring break. Still.
FCI1 CHAPTER OUTLINE 1. Definition of Capacitance 2. Calculating Capacitance 3. Combinations of Capacitors 4. Energy Stored in a Charged Capacitor.
Copyright © 2009 Pearson Education, Inc. May Term in Guatemala GDS 3559/STS 3500: Engineering Public Health: An Interdisciplinary Exploration of Community.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Capacitance and Dielectrics
 Devices that can store electric charge are called capacitors.  Capacitors consist of 2 conducting plates separated by a small distance containing an.
Capacitance.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Electric Potential. Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative – potential energy can be defined.
Capacitance and Dielectrics
Chapter 17 Electric Potential. Objectives: The students will be able to: Given the dimensions, distance between the plates, and the dielectric constant.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage.
Wednesday, Feb. 15, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #9 Wednesday, Feb. 15, 2012 Dr. Jae Yu Capacitors.
Chapter 17 Electric Potential.
Chapter 26: Capacitance and Dielectrics Reading assignment: Chapter 26 Homework 26.1, due Thursday, Oct. 2: QQ1, QQ2, 1, 2, 3, 7, 8, 9 Homework 26.2,
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
P212c25: 1 Chapter 25: Capacitance and Dielectrics Capacitor: two conductors (separated by an insulator) usually oppositely charged a +Q b -Q V ab proportional.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
111/16/2015 ELECTRICITY AND MAGNETISM Phy 220 Chapter 4: Capacitors.
Copyright © 2009 Pearson Education, Inc. Molecular Description of Dielectrics.
Monday, Feb. 13, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #8 Monday, Feb. 13, 2006 Dr. Jaehoon Yu Capacitors and.
Chapter 16 Electrical Energy AndCapacitance. General Physics Review - Electric Potential for a system of point charges.
Capacitance Physics Montwood High School R. Casao.
Chapter 25 Lecture 20: Capacitor and Capacitance.
Chapter 23 Electric Potential. Basics The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Equipotential.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Copyright © 2009 Pearson Education, Inc. Dielectrics.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
I Chapter 25 Electric Currents and Resistance. I Problem (II) A 0.50μF and a 0.80 μF capacitor are connected in series to a 9.0-V battery. Calculate.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Chapter 24: Capacitance and Dielectrics
Capacitors in Series & Parallel
Chapter 26: Capacitance and Dielectrics
Chapter 17 Electric Potential
Capacitors in Series & Parallel
Chapter 26: Capacitance and Dielectrics
Physics: Principles with Applications, 6th edition
Phys102 Lecture 7/8 Capacitors
Chapter 17 Electric Potential
PHYS 1444 – Section 003 Lecture #8
General Physics (PHY 2140) Lecture 6 Electrostatics
Chapter 23 Electric Potential.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 26: Capacitance and Dielectrics
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Presentation transcript:

Copyright © 2009 Pearson Education, Inc. Lecture 5 - Capacitance Capacitors & Dielectrics

Copyright © 2009 Pearson Education, Inc. Chapter 24 Capacitance, Dielectrics, Electric Energy Storage

Copyright © 2009 Pearson Education, Inc. Capacitors Determination of Capacitance Capacitors in Series and Parallel Electric Energy Storage Dielectrics Molecular Description of Dielectrics Units of Chapter 24

Copyright © 2009 Pearson Education, Inc. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge Capacitors

Copyright © 2009 Pearson Education, Inc. Parallel-plate capacitor connected to battery. (b) is a circuit diagram Capacitors

Copyright © 2009 Pearson Education, Inc. When a capacitor is connected to a battery, the charge on its plates is proportional to the voltage: The quantity C is called the capacitance. Unit of capacitance: the farad ( F ): 1 F = 1 C/V Capacitors

Copyright © 2009 Pearson Education, Inc Determination of Capacitance For a parallel-plate capacitor as shown, the field between the plates is E = Q/ ε 0 A. Integrating along a path between the plates gives the potential difference: V ba = Qd/ ε 0 A. This gives the capacitance:

Copyright © 2009 Pearson Education, Inc Determination of Capacitance Example 24-1: Capacitor calculations. (a) Calculate the capacitance of a parallel-plate capacitor whose plates are 20 cm × 3.0 cm and are separated by a 1.0-mm air gap. (b) What is the charge on each plate if a 12-V battery is connected across the two plates? (c) What is the electric field between the plates? (d) Estimate the area of the plates needed to achieve a capacitance of 1 F, given the same air gap d.

Copyright © 2009 Pearson Education, Inc Determination of Capacitance Capacitors are now made with capacitances of 1 farad or more, but they are not parallel- plate capacitors. Instead, they are activated carbon, which acts as a capacitor on a very small scale. The capacitance of 0.1 g of activated carbon is about 1 farad. Some computer keyboards use capacitors; depressing the key changes the capacitance, which is detected in a circuit.

Copyright © 2009 Pearson Education, Inc. Capacitors in parallel have the same voltage across each one. The equivalent capacitor is one that stores the same charge when connected to the same battery: 24-3 Capacitors in Series and Parallel

Copyright © 2009 Pearson Education, Inc. Capacitors in series have the same charge. In this case, the equivalent capacitor has the same charge across the total voltage drop. Note that the formula is for the inverse of the capacitance and not the capacitance itself! 24-3 Capacitors in Series and Parallel

Copyright © 2009 Pearson Education, Inc Capacitors in Series and Parallel Example 24-5: Equivalent capacitance. Determine the capacitance of a single capacitor that will have the same effect as the combination shown.

Copyright © 2009 Pearson Education, Inc. A charged capacitor stores electric energy; the energy stored is equal to the work done to charge the capacitor: 24-4 Electric Energy Storage

Copyright © 2009 Pearson Education, Inc Electric Energy Storage Example 24-8: Energy stored in a capacitor. A camera flash unit stores energy in a 150-μF capacitor at 200 V. (a) How much electric energy can be stored? (b) What is the power output if nearly all this energy is released in 1.0 ms?

Copyright © 2009 Pearson Education, Inc Electric Energy Storage Conceptual Example 24-9: Capacitor plate separation increased. A parallel-plate capacitor carries charge Q and is then disconnected from a battery. The two plates are initially separated by a distance d. Suppose the plates are pulled apart until the separation is 2d. How has the energy stored in this capacitor changed?

Copyright © 2009 Pearson Education, Inc Electric Energy Storage Example 24-10: Moving parallel capacitor plates. The plates of a parallel-plate capacitor have area A, separation x, and are connected to a battery with voltage V. While connected to the battery, the plates are pulled apart until they are separated by 3x. (a) What are the initial and final energies stored in the capacitor? (b) How much work is required to pull the plates apart (assume constant speed)? (c) How much energy is exchanged with the battery?

Copyright © 2009 Pearson Education, Inc. The energy density, defined as the energy per unit volume, is the same no matter the origin of the electric field: The sudden discharge of electric energy can be harmful or fatal. Capacitors can retain their charge indefinitely even when disconnected from a voltage source – be careful! 24-4 Electric Energy Storage

Copyright © 2009 Pearson Education, Inc. Heart defibrillators use electric discharge to “jump- start” the heart, and can save lives Electric Energy Storage

Copyright © 2009 Pearson Education, Inc. A dielectric is an insulator, and is characterized by a dielectric constant K. Capacitance of a parallel-plate capacitor filled with dielectric: 24-5 Dielectrics Using the dielectric constant, we define the permittivity:

Copyright © 2009 Pearson Education, Inc. Dielectric strength is the maximum field a dielectric can experience without breaking down Dielectrics

Copyright © 2009 Pearson Education, Inc Dielectrics Here are two experiments where we insert and remove a dielectric from a capacitor. In the first, the capacitor is connected to a battery, so the voltage remains constant. The capacitance increases, and therefore the charge on the plates increases as well.

Copyright © 2009 Pearson Education, Inc Dielectrics In this second experiment, we charge a capacitor, disconnect it, and then insert the dielectric. In this case, the charge remains constant. Since the dielectric increases the capacitance, the potential across the capacitor drops.

Copyright © 2009 Pearson Education, Inc Dielectrics Example 24-11: Dielectric removal. A parallel-plate capacitor, filled with a dielectric with K = 3.4, is connected to a 100-V battery. After the capacitor is fully charged, the battery is disconnected. The plates have area A = 4.0 m 2 and are separated by d = 4.0 mm. (a) Find the capacitance, the charge on the capacitor, the electric field strength, and the energy stored in the capacitor. (b) The dielectric is carefully removed, without changing the plate separation nor does any charge leave the capacitor. Find the new values of capacitance, electric field strength, voltage between the plates, and the energy stored in the capacitor.

Copyright © 2009 Pearson Education, Inc. The molecules in a dielectric, when in an external electric field, tend to become oriented in a way that reduces the external field Molecular Description of Dielectrics

Copyright © 2009 Pearson Education, Inc. This means that the electric field within the dielectric is less than it would be in air, allowing more charge to be stored for the same potential. This reorientation of the molecules results in an induced charge – there is no net charge on the dielectric, but the charge is asymmetrically distributed. The magnitude of the induced charge depends on the dielectric constant: 24-6 Molecular Description of Dielectrics

Copyright © 2009 Pearson Education, Inc. Capacitor: nontouching conductors carrying equal and opposite charge. Capacitance: Capacitance of a parallel-plate capacitor: Summary of Chapter 24

Copyright © 2009 Pearson Education, Inc. Summary of Chapter 24 Capacitors in parallel: Capacitors in series:

Copyright © 2009 Pearson Education, Inc. Energy density in electric field: A dielectric is an insulator. Dielectric constant gives ratio of total field to external field. For a parallel-plate capacitor: Summary of Chapter 24