CS61C L23 Caches I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 Cache I.

Slides:



Advertisements
Similar presentations
CS 430 – Computer Architecture
Advertisements

Modified from notes by Saeid Nooshabadi COMP3221: Microprocessors and Embedded Systems Lecture 25: Cache - I Lecturer:
CS 430 Computer Architecture 1 CS 430 – Computer Architecture Caches, Part II William J. Taffe using slides of David Patterson.
CS61C L32 Caches II (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #20: Caches Andy.
Computer ArchitectureFall 2007 © November 14th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L31 Caches II (1) Garcia, Fall 2006 © UCB GPUs >> CPUs?  Many are using graphics processing units on graphics cards for high-performance computing.
CS61C L22 Caches II (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Memory Subsystem and Cache Adapted from lectures notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley.
Lecturer PSOE Dan Garcia
CS61C L23 Cache II (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 – Cache II.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 32 – Caches III Prem Kumar of Northwestern has created a quantum inverter.
CS 61C L20 Caches I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Modified from notes by Saeid Nooshabadi
CS61C L22 Caches III (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #22: Caches Andy.
COMP3221 lec33-Cache-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 12: Cache Memory - I
Computer ArchitectureFall 2008 © October 27th, 2008 Majd F. Sakr CS-447– Computer Architecture.
CS61C L21 Caches I (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 31 – Caches II In this week’s Science, IBM researchers describe a new class.
CS61C L33 Caches III (1) Garcia, Spring 2007 © UCB Future of movies is 3D?  Dreamworks says they may exclusively release movies in this format. It’s based.
COMP3221: Microprocessors and Embedded Systems Lecture 26: Cache - II Lecturer: Hui Wu Session 2, 2005 Modified from.
CS61C L32 Caches II (1) Garcia, 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L31 Caches I (1) Garcia 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB Andy Carle inst.eecs.berkeley.edu/~cs61c-ta inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L20 Caches I (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #20: Caches Andy Carle.
CS61C L32 Caches II (1) Garcia, Spring 2007 © UCB Experts weigh in on Quantum CPU  Most “profoundly skeptical” of the demo. D-Wave has provided almost.
CS61C L30 Caches I (1) Garcia, Fall 2006 © UCB Shuttle can’t fly over Jan 1?  A computer bug has come up for the shuttle – its computers don’t reset to.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 30 – Caches I Touted as “the fastest CPU on Earth”, IBM’s new Power6 doubles.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
Computer ArchitectureFall 2007 © November 7th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L33 Caches III (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
COMP3221 lec34-Cache-II.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 34: Cache Memory - II
CS61C L24 Cache II (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 Cache II.
ENEE350 Ankur Srivastava University of Maryland, College Park Based on Slides from Mary Jane Irwin ( )
Cs 61C L17 Cache.1 Patterson Spring 99 ©UCB CS61C Cache Memory Lecture 17 March 31, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html.
CS61C L31 Caches I (1) Garcia, Spring 2007 © UCB Powerpoint bad!!  Research done at the Univ of NSW says that “working memory”, the brain part providing.
Computer ArchitectureFall 2008 © November 3 rd, 2008 Nael Abu-Ghazaleh CS-447– Computer.
CS61C L18 Cache2 © UC Regents 1 CS61C - Machine Structures Lecture 18 - Caches, Part II November 1, 2000 David Patterson
CS 61C L21 Caches II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L32 Caches III (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C.
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 14 Instructor: L.N. Bhuyan
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
DAP Spr.‘98 ©UCB 1 Lecture 11: Memory Hierarchy—Ways to Reduce Misses.
Cache Memory CSE Slides from Dan Garcia, UCB.
10/18: Lecture topics Memory Hierarchy –Why it works: Locality –Levels in the hierarchy Cache access –Mapping strategies Cache performance Replacement.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 10 Memory Hierarchy.
CSIE30300 Computer Architecture Unit 08: Cache Hsin-Chou Chi [Adapted from material by and
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CS61C L17 Cache1 © UC Regents 1 CS61C - Machine Structures Lecture 17 - Caches, Part I October 25, 2000 David Patterson
CML CML CS 230: Computer Organization and Assembly Language Aviral Shrivastava Department of Computer Science and Engineering School of Computing and Informatics.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
Csci 211 Computer System Architecture – Review on Cache Memory Xiuzhen Cheng
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
CS.305 Computer Architecture Memory: Caches Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005, and from slides kindly made available.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 30 – Caches I After more than 4 years C is back at position number 1 in.
Review °We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. °So we create a memory hierarchy:
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 14 – Caches III Google Glass may be one vision of the future of post-PC.
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
COMP 3221: Microprocessors and Embedded Systems Lectures 27: Cache Memory - III Lecturer: Hui Wu Session 2, 2005 Modified.
Instructor Paul Pearce
CS61C : Machine Structures Lecture 6. 2
Memristor memory on its way (hopefully)
CS61C : Machine Structures Lecture 6. 2
Instructor Paul Pearce
Lecturer PSOE Dan Garcia
ECE232: Hardware Organization and Design
CS-447– Computer Architecture Lecture 20 Cache Memories
Lecturer PSOE Dan Garcia
Some of the slides are adopted from David Patterson (UCB)
Some of the slides are adopted from David Patterson (UCB)
Csci 211 Computer System Architecture – Review on Cache Memory
Presentation transcript:

CS61C L23 Caches I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 Cache I

CS61C L23 Caches I (2) Beamer, Summer 2007 © UCB The Big Picture Processor (active) Computer Control (“brain”) Datapath (“brawn”) Memory (passive) (where programs, data live when running) Devices Input Output Keyboard, Mouse Display, Printer Disk, Network

CS61C L23 Caches I (3) Beamer, Summer 2007 © UCB Memory Hierarchy Processor Size of memory at each level Increasing Distance from Proc., Decreasing speed Level 1 Level 2 Level n Level 3... Higher Lower Levels in memory hierarchy As we move to deeper levels the latency goes up and price per bit goes down.

CS61C L23 Caches I (4) Beamer, Summer 2007 © UCB Memory Hierarchy If level closer to Processor, it is: smaller faster subset of lower levels (contains most recently used data) Lowest Level (usually disk) contains all available data (or does it go beyond the disk?) Memory Hierarchy presents the processor with the illusion of a very large very fast memory.

CS61C L23 Caches I (5) Beamer, Summer 2007 © UCB Memory Hierarchy Analogy: Library (1/2) You’re writing a term paper (Processor) at a table in Doe Doe Library is equivalent to disk essentially limitless capacity very slow to retrieve a book Table is main memory smaller capacity: means you must return book when table fills up easier and faster to find a book there once you’ve already retrieved it

CS61C L23 Caches I (6) Beamer, Summer 2007 © UCB Memory Hierarchy Analogy: Library (2/2) Open books on table are cache smaller capacity: can have very few open books fit on table; again, when table fills up, you must close a book much, much faster to retrieve data Illusion created: whole library open on the tabletop Keep as many recently used books open on table as possible since likely to use again Also keep as many books on table as possible, since faster than going to library

CS61C L23 Caches I (7) Beamer, Summer 2007 © UCB Memory Hierarchy Basis Cache contains copies of data in memory that are being used. Memory contains copies of data on disk that are being used. Caches work on the principles of temporal and spatial locality. Temporal Locality: if we use it now, chances are we’ll want to use it again soon. Spatial Locality: if we use a piece of memory, chances are we’ll use the neighboring pieces soon.

CS61C L23 Caches I (8) Beamer, Summer 2007 © UCB Cache Design How do we organize cache? Where does each memory address map to? (Remember that cache is subset of memory, so multiple memory addresses map to the same cache location.) How do we know which elements are in cache? How do we quickly locate them?

CS61C L23 Caches I (9) Beamer, Summer 2007 © UCB Direct-Mapped Cache (1/4) In a direct-mapped cache, each memory address is associated with one possible block within the cache Therefore, we only need to look in a single location in the cache for the data if it exists in the cache Block is the unit of transfer between cache and memory

CS61C L23 Caches I (10) Beamer, Summer 2007 © UCB Direct-Mapped Cache (2/4) Cache Location 0 can be occupied by data from: Memory location 0, 4, 8,... 4 blocks  any memory location that is multiple of 4 Memory Memory Address A B C D E F 4 Byte Direct Mapped Cache Cache Index What if we wanted a block to be bigger than one byte? Block size = 1 byte

CS61C L23 Caches I (11) Beamer, Summer 2007 © UCB Direct-Mapped Cache (3/4) When we ask for a byte, the system finds out the right block, and loads it all! How does it know right block? How do we select the byte? E.g., Mem address 11101? How does it know WHICH colored block it originated from? What do you do at baggage claim? Memory Memory Address A C E A 1C 1E 8 Byte Direct Mapped Cache Cache Index etc Block size = 2 bytes

CS61C L23 Caches I (12) Beamer, Summer 2007 © UCB Direct-Mapped Cache (4/4) What should go in the tag? Do we need the entire address?  What do all these tags have in common? What did we do with the immediate when we were branch addressing, always count by bytes? Why not count by cache #? It’s useful to draw memory with the same width as the block size Memory (addresses shown) Memory Address A C E A 1C 1E 8 Byte Direct Mapped Cache w/Tag! Cache Index etc Tag Data (Block size = 2 bytes) E Cache#

CS61C L23 Caches I (13) Beamer, Summer 2007 © UCB Issues with Direct-Mapped Since multiple memory addresses map to same cache index, how do we tell which one is in there? What if we have a block size > 1 byte? Answer: divide memory address into three fields ttttttttttttttttt iiiiiiiiii oooo tagindexbyte to checkto offset if have selectwithin correct blockblockblock

CS61C L23 Caches I (14) Beamer, Summer 2007 © UCB Direct-Mapped Cache Terminology All fields are read as unsigned integers. Index: specifies the cache index (which “row”/block of the cache we should look in) Offset: once we’ve found correct block, specifies which byte within the block we want Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

CS61C L23 Caches I (15) Beamer, Summer 2007 © UCB TIO Dan’s great cache mnemonic AREA (cache size, B) = HEIGHT (# of blocks) * WIDTH (size of one block, B/block) WIDTH (size of one block, B/block) HEIGHT (# of blocks) AREA (cache size, B) 2 (H+W) = 2 H * 2 W Tag Index Offset

CS61C L23 Caches I (16) Beamer, Summer 2007 © UCB Direct-Mapped Cache Example (1/3) Suppose we have a 16KB of data in a direct-mapped cache with 4 word blocks Determine the size of the tag, index and offset fields if we’re using a 32-bit architecture Offset need to specify correct byte within a block block contains 4 words = 16 bytes = 2 4 bytes need 4 bits to specify correct byte

CS61C L23 Caches I (17) Beamer, Summer 2007 © UCB Direct-Mapped Cache Example (2/3) Index: (~index into an “array of blocks”) need to specify correct block in cache cache contains 16 KB = 2 14 bytes block contains 2 4 bytes (4 words) # blocks/cache =bytes/cache bytes/block = 2 14 bytes/cache 2 4 bytes/block =2 10 blocks/cache need 10 bits to specify this many blocks

CS61C L23 Caches I (18) Beamer, Summer 2007 © UCB Direct-Mapped Cache Example (3/3) Tag: use remaining bits as tag tag length = addr length – offset - index = bits = 18 bits so tag is leftmost 18 bits of memory address Why not full 32 bit address as tag? All bytes within block need same address (4b) Index must be same for every address within a block, so it’s redundant in tag check, thus can leave off to save memory (here 10 bits)

CS61C L23 Caches I (19) Beamer, Summer 2007 © UCB Caching Terminology When we try to read memory, 3 things can happen: 1.cache hit: cache block is valid and contains proper address, so read desired word 2.cache miss: nothing in cache in appropriate block, so fetch from memory 3.cache miss, block replacement: wrong data is in cache at appropriate block, so discard it and fetch desired data from memory (cache always copy)

CS61C L23 Caches I (20) Beamer, Summer 2007 © UCB Administrivia Assignments HW7 due Tonight 8/2 Proj3 due Sunday 8/5 Proj3 will have face-to-face grading You will be able to sign up online tonight or tomorrow for timeslots next week Today’s lab is “non-trivial,” so work in groups and make sure you understand it Course Survey during last lecture

CS61C L23 Caches I (21) Beamer, Summer 2007 © UCB Block Size Tradeoff (1/3) Benefits of Larger Block Size Spatial Locality: if we access a given word, we’re likely to access other nearby words soon Very applicable with Stored-Program Concept: if we execute a given instruction, it’s likely that we’ll execute the next few as well Works nicely in sequential array accesses too

CS61C L23 Caches I (22) Beamer, Summer 2007 © UCB Block Size Tradeoff (2/3) Drawbacks of Larger Block Size Larger block size means larger miss penalty  on a miss, takes longer time to load a new block from next level If block size is too big relative to cache size, then there are too few blocks  Result: miss rate goes up In general, minimize Average Memory Access Time (AMAT) = Hit Time + Miss Penalty x Miss Rate

CS61C L23 Caches I (23) Beamer, Summer 2007 © UCB Block Size Tradeoff (3/3) Hit Time = time to find and retrieve data from current level cache Miss Penalty = average time to retrieve data on a current level miss (includes the possibility of misses on successive levels of memory hierarchy) Hit Rate = % of requests that are found in current level cache Miss Rate = 1 - Hit Rate

CS61C L23 Caches I (24) Beamer, Summer 2007 © UCB Extreme Example: One Big Block Cache Size = 4 bytesBlock Size = 4 bytes Only ONE entry (row) in the cache! If item accessed, likely accessed again soon But unlikely will be accessed again immediately! The next access will likely to be a miss again Continually loading data into the cache but discard data (force out) before use it again Nightmare for cache designer: Ping Pong Effect Cache Data Valid Bit B 0B 1B 3 Tag B 2

CS61C L23 Caches I (25) Beamer, Summer 2007 © UCB Block Size Tradeoff Conclusions Miss Penalty Block Size Increased Miss Penalty & Miss Rate Average Access Time Block Size Exploits Spatial Locality Fewer blocks: compromises temporal locality Miss Rate Block Size

CS61C L23 Caches I (26) Beamer, Summer 2007 © UCB Types of Cache Misses (1/2) “Three Cs” Model of Misses 1st C: Compulsory Misses occur when a program is first started cache does not contain any of that program’s data yet, so misses are bound to occur can’t be avoided easily, so won’t focus on these in this course

CS61C L23 Caches I (27) Beamer, Summer 2007 © UCB Types of Cache Misses (2/2) 2nd C: Conflict Misses miss that occurs because two distinct memory addresses map to the same cache location two blocks (which happen to map to the same location) can keep overwriting each other big problem in direct-mapped caches how do we lessen the effect of these? Dealing with Conflict Misses Solution 1: Make the cache size bigger  Fails at some point Solution 2: Multiple distinct blocks can fit in the same cache Index?

CS61C L23 Caches I (28) Beamer, Summer 2007 © UCB Fully Associative Cache (1/3) Memory address fields: Tag: same as before Offset: same as before Index: non-existant What does this mean? no “rows”: any block can go anywhere in the cache must compare with all tags in entire cache to see if data is there

CS61C L23 Caches I (29) Beamer, Summer 2007 © UCB Fully Associative Cache (2/3) Fully Associative Cache (e.g., 32 B block) compare tags in parallel Byte Offset : Cache Data B : Cache Tag (27 bits long) Valid : B 1B 31 : Cache Tag = = = = = :

CS61C L23 Caches I (30) Beamer, Summer 2007 © UCB Fully Associative Cache (3/3) Benefit of Fully Assoc Cache No Conflict Misses (since data can go anywhere) Drawbacks of Fully Assoc Cache Need hardware comparator for every single entry: if we have a 64KB of data in cache with 4B entries, we need 16K comparators: infeasible

CS61C L23 Caches I (31) Beamer, Summer 2007 © UCB Third Type of Cache Miss Capacity Misses miss that occurs because the cache has a limited size miss that would not occur if we increase the size of the cache sketchy definition, so just get the general idea This is the primary type of miss for Fully Associative caches.

CS61C L23 Caches I (32) Beamer, Summer 2007 © UCB N-Way Set Associative Cache (1/3) Memory address fields: Tag: same as before Offset: same as before Index: points us to the correct “row” (called a set in this case) So what’s the difference? each set contains multiple blocks once we’ve found correct set, must compare with all tags in that set to find our data

CS61C L23 Caches I (33) Beamer, Summer 2007 © UCB Associative Cache Example Here’s a simple 2 way set associative cache. Memory Memory Address A B C D E F Cache Index

CS61C L23 Caches I (34) Beamer, Summer 2007 © UCB N-Way Set Associative Cache (2/3) Basic Idea cache is direct-mapped w/respect to sets each set is fully associative basically N direct-mapped caches working in parallel: each has its own valid bit and data Given memory address: Find correct set using Index value. Compare Tag with all Tag values in the determined set. If a match occurs, hit!, otherwise a miss. Finally, use the offset field as usual to find the desired data within the block.

CS61C L23 Caches I (35) Beamer, Summer 2007 © UCB N-Way Set Associative Cache (3/3) What’s so great about this? even a 2-way set assoc cache avoids a lot of conflict misses hardware cost isn’t that bad: only need N comparators In fact, for a cache with M blocks, it’s Direct-Mapped if it’s 1-way set assoc it’s Fully Assoc if it’s M-way set assoc so these two are just special cases of the more general set associative design

CS61C L23 Caches I (36) Beamer, Summer 2007 © UCB 4-Way Set Associative Cache Circuit tag index

CS61C L23 Caches I (37) Beamer, Summer 2007 © UCB Peer Instruction A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B. If you know your computer’s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT

CS61C L23 Caches I (38) Beamer, Summer 2007 © UCB Peer Instruction Answer A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B. If you know your computer’s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT A.“We are…forced to recognize the possibility of constructing a hierarchy of memories, each of which has greater capacity than the preceding but which is less accessible.” – von Neumann, 1946 B.Certainly! That’s call “tuning” C.“Most Recent” items  Temporal locality

CS61C L23 Caches I (39) Beamer, Summer 2007 © UCB And in Conclusion… We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. So we create a memory hierarchy: each successively lower level contains “most used” data from next higher level exploits temporal & spatial locality do the common case fast, worry less about the exceptions (design principle of MIPS) Locality of reference is a Big Idea