16.360 Lecture 4 Last lecture: 1.Phasor 2.Electromagnetic spectrum 3.Transmission parameters equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t)

Slides:



Advertisements
Similar presentations
EMLAB 1 Transmission line. EMLAB 2 An apparatus to convey energy or signal from one place to another place. Transmitter to an antenna connections between.
Advertisements

Lecture 6. Chapter 3 Microwave Network Analysis 3.1 Impedance and Equivalent Voltages and Currents 3.2 Impedance and Admittance Matrices 3.3 The Scattering.
ENE 428 Microwave Engineering
EKT241 – ELECTROMAGNETICS THEORY
UNIVERSITI MALAYSIA PERLIS
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
KAVOSHCOM RF Communication Circuits Lecture 1: Transmission Lines.
Prof. D. R. Wilton Note 2 Transmission Lines (Time Domain) ECE 3317.
ELCT564 Spring /9/20151ELCT564 Chapter 2: Transmission Line Theory.
Chapter 2: Transmission Line Theory
EEE340Lecture 391 For nonmagnetic media,  1 =  2 =  : Total reflection When  1 >  2 (light travels from water to air)  t >  i If  t = 
July, 2003© 2003 by H.L. Bertoni1 I. Introduction to Wave Propagation Waves on transmission lines Plane waves in one dimension Reflection and transmission.
Lecture 1 Units and dimensions Six fundamental International System of Units DimensionsUnitsymbol Lengthmeterm Masskilogramkg Timeseconds Electric.
Lecture 6 Last lecture: Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission.
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
Lecture 2 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
Electromagnetics (ENGR 367)
Lecture 3 Last lecture: Magnetic field by constant current r I B = 2r2r II    =  r  0,  r: relative magnetic permeability  r =1 for most.
Lecture 9 Last lecture Parameter equations input impedance.
Lecture 9 Last lecture Power flow on transmission line.
Dr. Yungui MA ( 马云贵 ) Office: Room 209, East Building 5, Zijin’gang campus Microwave Fundamentals.
1 ENE 429 Antenna and Transmission lines Theory Lecture 4 Transmission lines.
Lecture 4.  1.5 The terminated lossless transmission line What is a voltage reflection coefficient? Assume an incident wave ( ) generated from a source.
ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.
Lecture 6.
Chapter 2. Transmission Line Theory
Transmission Line Theory
10. Transmission Line 서강대학교 전자공학과 윤상원 교수
Telegragher’s Equations Group - A. Usman Nofal Kh. Muhammad Mashood Khawaja Muhammad Abdul Rahman Abdullah Amin Yahya Ahmad Syeda Sana Zafar Taimoor Tahir.
Notes 5 ECE Microwave Engineering Waveguides Part 2:
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 9 ECE 6340 Intermediate EM Waves 1.
Lecture 9 Smith Chart Normalized admittance z and y are directly opposite each other on.
Lecture 12 Smith Chart & VSWR
ELECTROMAGNETICS AND APPLICATIONS Lecture 11 RF & Microwave TEM Lines Luca Daniel.
Electromagnetic waves and Applications Part III:
Lecture 3 Phasor V R (t) Vs(t)V C (t) i (t) Vs(t) = V 0 Sin(  t+  0 ), V R (t) = i(t)R, V C (t) = i(t)dt/C, Vs(t) = V R (t) +V C (t), V 0 Sin(
L1-1 ELECTROMAGNETICS AND APPLICATIONS Lecture 8 TEM Transmission Lines Luca Daniel.
Yi HUANG Department of Electrical Engineering & Electronics
Chapter 2: Transmission lines and waveguides
Prof. Ji Chen Notes 6 Transmission Lines (Time Domain) ECE Spring 2014.
Lecture 5.
Lecture 4 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
ENE 428 Microwave Engineering
Lecture 2. Review lecture 1 Wavelength: Phase velocity: Characteristic impedance: Kerchhoff’s law Wave equations or Telegraphic equations L, R, C, G ?
Lecture 3.
Chapter 2. Transmission Line Theory
Chapter 2 Transmission Line Theory (2.1 ~ 2.5) 전자파연구실 1.
Lecture 5 Last lecture: Transmission line parameters Types of transmission lines Lumped-element model Transmission line equations Telegrapher’s.
TRANSMISSION LINE EQUATIONS Transmission line is often schematically represented as a two-wire line. Figure 1: Voltage and current definitions. The transmission.
Chapter9 Theory and Applications of Transmission Lines.
Chapter 2 Overview 1.
ENE 429 Antenna and Transmission lines Theory Lecture 7 Waveguides DATE: 3-5/09/07.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 7 ECE 6340 Intermediate EM Waves 1.
Lab2: Smith Chart And Matching
Smith Chart & Matching Anurag Nigam.
Lecture 8 Last lecture short circuit line open circuit line
Applied EM by Ulaby, Michielssen and Ravaioli
transmission line models telegraphist's equations
Non-ideal property – crosstalk
Transmission Lines & Resonators
ENE 428 Microwave Engineering
Electromagnetics II Unit 1:Basics of Transmission Lines
Notes 7 ECE 6340 Intermediate EM Waves Fall 2016
7e Applied EM by Ulaby and Ravaioli
Applied Electromagnetic Waves Notes 6 Transmission Lines (Time Domain)
Transmission Lines and Waveguides 1. Review and Introduction
Notes 10 Transmission Lines (Reflection and Impedance)
Microwave Engineering
7e Applied EM by Ulaby and Ravaioli
Presentation transcript:

Lecture 4 Last lecture: 1.Phasor 2.Electromagnetic spectrum 3.Transmission parameters equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/c) = V0cos(  (t-L/c)) = V0cos(  t- 2  L/ ), If >>L, V BB’ (t)  V0cos(  t) = V AA’ (t), If <= L, V BB’ (t)  V AA’ (t), the circuit theory has to be replaced.

Lecture 4 Transmission line parameters Types of transmission lines Lumped-element model Transmission line equations Telegrapher’s equations Wave equations Today:

Lecture 4 Transmission line parameters Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L time delay V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/v p ), Reflection: the voltage has to be treat as wave, some bounce back power loss: due to reflection and some other loss mechanism, Dispersion: in material, V p could be different for different wavelength

Lecture 4 Types of transmission lines Transverse electromagnetic (TEM) transmission lines B E E B a) Coaxial lineb) Two-wire linec) Parallel-plate line d) Strip linee) Microstrip line

Lecture 4 Types of transmission lines Higher-order transmission lines a) Optical fiber b) Rectangular waveguidec) Coplanar waveguide

Lecture 4 Lumped-element Model Represent transmission lines as parallel-wire configuration Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B zz zz zz Vg(t) R’  z L’  z G’  z C’  z R’  z L’  z G’  z R’  z C’  z L’  z G’  z C’  z

Lecture 4 Transmission line equations Represent transmission lines as parallel-wire configuration V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) i (z,t) i (z+  z,t) i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Lecture 4 Transmission line equations V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) -V(z+  z,t) + V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t -  V(z,t)/  z = R’ i (z,t) + L’  i (z,t)/  t, (3) Rewrite V(z,t) and i (z,t) as phasors, for sinusoidal V(z,t) and i (z,t) : V(z,t) = Re( V(z) e jtjt ), i (z,t) = Re( i (z) e jtjt ),

Lecture 4 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) Recall: di(t)/dt = Re(d i e jtjt )/dt ),= Re(i jtjt e jj -  V(z,t)/  z = R’ i (z,t) + L’  i (z,t)/  t, (3) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4)

Lecture 4 Transmission line equations Represent transmission lines as parallel-wire configuration V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) i (z,t) i (z+  z,t) i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Lecture 4 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - i (z+  z,t) + i (z,t) = G’  z V (z +  z,t) + C’  z  V(z +  z,t)/  t -  i(z,t)/  z = G’ V (z,t) + C’  V (z,t)/  t, (5) Rewrite V(z,t) and i (z,t) as phasors, for sinusoidal V(z,t) and i (z,t) : V(z,t) = Re( V(z) e jtjt ), i (z,t) = Re( i (z) e jtjt ), i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Lecture 4 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) Recall: dV(t)/dt = Re(d V e jtjt )/dt ),= Re(V jtjt e jj -  i(z,t)/  z = G’ V (z,t) + C’  V (z,t)/  t, (6) - d i(z)/ dz = G’ V (z) + j  C’ V (z), (7)

Lecture 4 V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain Take d /dz on both sides of eq. (4) - d² V(z)/ dz² = R’ d i (z)/dz + j  L’ d i (z)/dz, (8)

Lecture 4 - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain substitute (7) to (8) d² V(z)/ dz² = ( R’ + j  L’) (G’+ j  C’)V(z), - d² V(z)/ dz² = R’ d i (z)/dz + j  L’ d i (z)/dz, (8) d² V(z)/ dz² - ( R’ + j  L’) (G’+ j  C’)V(z) = 0, (9) or d² V(z)/ dz² -  ² V(z) = 0, (10)  ² = ( R’ + j  L’) (G’+ j  C’), (11)

Lecture 4 V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain Take d /dz on both sides of eq. (7) - d² i(z)/ dz² = G’ d V (z)/dz + j  C’ d V (z)/dz, (12)

Lecture 4 - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain substitute (4) to (12) d² i(z)/ dz² = ( R’ + j  L’) (G’+ j  C’)i(z), d² i(z)/ dz² - ( R’ + j  L’) (G’+ j  C’) i(z) = 0, (9) or d² i(z)/ dz² -  ² i(z) = 0, (13)  ² = ( R’ + j  L’) (G’+ j  C’), (11) - d² i(z)/ dz² = G’ d V (z)/dz + j  C’ d V (z)/dz, (12)

Lecture 4 Wave equations d² i(z)/ dz² -  ² i(z) = 0, (13) d² V(z)/ dz² -  ² V(z) = 0, (10)  =  + j ,  = Re ( R’ + j  L’) (G’+ j  C’),  = Im ( R’ + j  L’) (G’+ j  C’),

Lecture 4 Summary Transmission line parameters Types of transmission lines Lumped-element model Transmission line equations Telegrapher’s equations Wave equations

Lecture 4 Next lecture Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission line Reflection coefficient