Perspectives on Fusion Electric Power Plants Farrokh Najmabadi University of California, San Diego, La Jolla, CA FPA Annual Meeting December 13, 2004 Washington,

Slides:



Advertisements
Similar presentations
Comments on Progress Toward and Opportunities for Attractive Magnetic Fusion Power Plants Farrokh Najmabadi FPA workshop Jan 23-25, 1999 Marina Del Rey,
Advertisements

Fusion Power Plants: Visions and Development Pathway Farrokh Najmabadi UC San Diego 15 th ICENES May 15 – 19, 2011 San Francisco, CA You can download a.
October 16-19, 2000 A. R. Raffray, et al., ARIES-AT Blanket and Divertor, ANS Top. Meet. On TOFE ARIES-AT Blanket and Divertor A. R. Raffray 1,
ARIES-AT: An Advanced Tokamak, Advanced Technology Fusion Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA, United States.
Overview of the ARIES Program Farrokh Najmabadi University of California San Diego Presentation to: ARIES Program Peer Review August 18, 2000 UC San Diego.
January 8-10, 2003/ARR 1 Plan for Engineering Study of ARIES-CS Presented by A. R. Raffray University of California, San Diego ARIES Meeting UCSD San.
Impact of Advanced Technologies on Fusion Power Plant Characteristics: The ARIES-AT Study Farrokh Najmabadi University of California, San Diego, La Jolla,
Overview of NSO and Advanced Design Studies Farrokh Najmabadi OFES Budget Meeting April 4-6, 2000 OFES Headquarters, Germantown Electronic copy:
September 11, 2000 A. R. Raffray, et al., High Performance Blanket for ARIES-AT Power Plant, SOFT 2000 High Performance Blanket for Aries-AT Power Plant.
Summary and Closing Remarks Farrokh Najmabadi University of California San Diego Presentation to: ARIES Program Peer Review August 18, 2000 UC San Diego.
ARIES-AT: Evolution of Vision for Advanced Tokamak Power Plants Farrokh Najmabadi University of California, San Diego, La Jolla, CA, United States of America.
National Fusion Power Plant Studies Program Achievements and Recent Results Prepared for Bill Dove OFES Headquarters June, 1999.
Overview of the ARIES Fusion Power Plant Studies Farrokh Najmabadi IAEA Technical Committee Meeting on Fusion Power Plant Studies March 24-28, 1998 Culham,
National Fusion Power Plant Studies Program Achievements and Recent Results Farrokh Najmabadi University of California, San Diego FESAC Meeting March 4-5,
Towards Attractive Fusion Power Plants Farrokh Najmabadi University of California San Diego Presented at Korean National Fusion Research Center Daejon,
June 14-15, 2007/ARR 1 Trade-Off Studies and Engineering Input to System Code Presented by A. René Raffray University of California, San Diego With contribution.
March 16-17, 2000ARIES-AT Blanket Design and Power Conversion, US/Japan Workshop/ARR ARIES-AT Blanket Design and Power Conversion The ARIES Team Presented.
Optimization of Spherical Torus as Power Plants -- The ARIES-ST Study Farrokh Najmabadi and the ARIES Team University of California, San Diego ISFNT-5.
RECENT RESULTS FROM USA MAGNETIC FUSION POWER PLANTS Farrokh Najmabadi University of California, San Diego, La Jolla, CA, United States of America German.
Characteristics of an Economically Attractive Fusion Power Plant Farrokh Najmabadi University of California San Diego Fusion: Energy Source for the Future?
August 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1 ARIES: Fusion Power Core and Power Cycle Engineering The ARIES Team Presented.
ARIES-AT: An Advanced Tokamak, Advanced Technology Fusion Power Plant Presented by Farrokh Najmabadi University of California, San Diego, La Jolla, CA,
Contributions of Burning Plasma Physics Experiment to Fusion Energy Goals Farrokh Najmabadi Dept. of Electrical & Computer Eng. And Center for Energy Research.
Overview of the ARIES Program Farrokh Najmabadi University of California San Diego Presentation to: ARIES Program Peer Review August 18, 2000 UC San Diego.
Development of the New ARIES Tokamak Systems Code Zoran Dragojlovic, Rene Raffray, Farrokh Najmabadi, Charles Kessel, Lester Waganer US-Japan Workshop.
Impact of Liquid Wall on Fusion Systems Farrokh Najmabadi University of California, San Diego NRC Fusion Science Assessment Committee November 17, 1999.
Status of Advanced Design Studies and Overview of ARIES-AT Study Farrokh Najmabadi US/Japan Workshop on Fusion Power Plant Studies & Advanced Technologies.
Characteristics of Commercial Fusion Power Plants Results from ARIES-AT Study Farrokh Najmabadi Fusion Power Associates Annual Meeting & Symposium July.
Optimization of a Steady-State Tokamak-Based Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA IEA Workshop 59 “Shape and.
Prospect for Attractive Fusion Power (Focus on tokamaks) Farrokh Najmabadi University of California San Diego Mini-Conference on Nuclear Renaissance 48th.
Overview of ARIES Compact Stellarator Study Farrokh Najmabadi and the ARIES Team UC San Diego US/Japan Workshop on Power Plant Studies & Related Advanced.
Environmental, Safety, and Economics Studies of Magnetic Fusion, Including Power Plant Design Studies Robert W. Conn Farrokh Najmabadi University of California.
The Future Prospects of Fusion Power Plants Farrokh Najmabadi University of California San Diego MIT IAP January 10, 2006 Electronic copy:
Overview of the ARIES-ST Study Farrokh Najmabadi University of California, San Diego Japan/US Workshop on Fusion Power Plants & Related Technologies with.
Physics Issues and Trade-offs in Magnetic Fusion Power Plants Farrokh Najmabadi University of California, San Diego, La Jolla, CA APS April 2002 Meeting.
Magnetic Fusion Power Plants Farrokh Najmabadi MFE-IFE Workshop Sept 14-16, 1998 Princeton Plasma Physics Laboratory.
Highlights of ARIES-AT Study Farrokh Najmabadi For the ARIES Team VLT Conference call July 12, 2000 ARIES Web Site:
June19-21, 2000Finalizing the ARIES-AT Blanket and Divertor Designs, ARIES Project Meeting/ARR ARIES-AT Blanket and Divertor Design (The Final Stretch)
Requirements and Designs for IFE and MFE First Wall and Blankets Farrokh Najmabadi UC San Diego 2nd Japan/US Workshop on Laser-driven Inertial Fusion Energy.
Role of ITER in Fusion Development Farrokh Najmabadi University of California, San Diego, La Jolla, CA FPA Annual Meeting September 27-28, 2006 Washington,
ARIES Systems Studies: ARIES-I and ARIES-AT type operating points C. Kessel Princeton Plasma Physics Laboratory ARIES Project Meeting, San Diego, December.
Contributions of Advanced Design Activities to Fusion Research Farrokh Najmabadi University of California San Diego Presentation to: VLT PAC Meeting February.
Prospects for Attractive Fusion Power Plants Farrokh Najmabadi University of California San Diego 18 th KAIF/KNS Workshop Seoul, Korea April 21, 2006 Electronic.
July 4, 2001 A. R. Raffray, et al., ARIES-AT Blanket and Divertor Design, SNECMA, Bordeaux, France 1 ARIES-AT Blanket and Divertor Design Presented by.
March 20-21, 2000ARIES-AT Blanket and Divertor Design, ARIES Project Meeting/ARR Status ARIES-AT Blanket and Divertor Design The ARIES Team Presented.
The Energy Challenge – Fusion Energy Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego November 21,
Overview of ARIES ACT-1 Study Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego and the.
Magnetic Fusion Power Plants -- Tritium Systems and Requirements Farrokh Najmabadi, Director, Center for Energy Research University of California, San.
Re-Examination of Visions for Tokamak Power Plants – The ARIES-ACT Study Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center.
Progress in ARIES-ACT Study Farrokh Najmabadi UC San Diego Japan/US Workshop on Power Plant Studies and Related Advanced Technologies 8-9 March 2012 US.
Assessment and comparison of pulsed and steady-state tokamak power plants Farrokh Najmabadi UC San Diego 21 st International Toki Conference, 28 Novemeber-1.
Fusion: Bringing star power to earth Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego NES Grand Challenges.
October 27-28, 2004 HAPL meeting, PPPL 1 Thermal-Hydraulic Analysis of Ceramic Breeder Blanket and Plan for Future Effort A. René Raffray UCSD With contributions.
Design study of advanced blanket for DEMO reactor US/JP Workshop on Fusion Power Plants and Related Advanced Technologies 23 th -24 th Feb at UCSD,
ARIES-AT Physics Overview presented by S.C. Jardin with input from C. Kessel, T. K. Mau, R. Miller, and the ARIES team US/Japan Workshop on Fusion Power.
Summary and Closing Remarks Farrokh Najmabadi UC San Diego Presentation to ARIES Program Peer Review August 29, 2013, Washington, DC.
March 29-31, 2001 A. R. Raffray, et al., ARIES-AT Blanket and Divertor, Japan-US Workshop, Tokyo 1 ARIES-AT Blanket and Divertor Design Presented by A.
European Fusion Power Plant Conceptual Study - Parameters For Near-term and Advanced Models David Ward Culham Science Centre (Presented by Ian Cook) This.
Towards An Attractive Fusion Power Plant Farrokh Najmabadi Forum on Next Step Device April 27, May 1, 1998 U. Wisconsin, Madison, Wisconsin.
November 15, 2000 A. R. Raffray, and the ARIES Team., ARIES-ST and ARIES-AT Blanket Designs, APEX Meeting Summary of Major Features of ARIES-ST and ARIES-AT.
HAPL June 20-21, Overview of Chamber/Blanket Work Presented by A.R. Raffray UCSD With contributions from CTC Group and MWG Blanket contributions:
SOFE Mini-Course Fusion Power Plants Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego June 5, 2009.
EVOLUTION OF VISIONS FOR TOKAMAK FUSION POWER PLANTS
Fusion power: Visions and the Development Path in the ITER Era
Improvements to power flow modeling in the ARIES system code
Trade-Off Studies and Engineering Input to System Code
Farrokh Najmabadi University of California, San Diego,
Historical Perspectives and Pathways to an Attractive Power Plant
Farrokh Najmabadi Professor of Electrical & Computer Engineering
Comments on ARIES-ACT 10/20/2010 Pre-Strawman
Presentation transcript:

Perspectives on Fusion Electric Power Plants Farrokh Najmabadi University of California, San Diego, La Jolla, CA FPA Annual Meeting December 13, 2004 Washington, DC Electronic copy: ARIES Web Site:

Evolution of the Vision of Fusion Power Plants (last 15 years) 1. Plasma Physics

 Our vision of a fusion system in 1980s was a large pulsed device. Non-inductive current drive is inefficient.  Some important achievements in 1980s: Experimental demonstration of bootstrap current; Development of ideal MHD codes that agreed with experimental results. Development of stead-state power plant concepts (ARIES-I and SSTR) based on the trade-off of bootstrap current fraction and plasma   Our vision of a fusion system in 1980s was a large pulsed device. Non-inductive current drive is inefficient.  Some important achievements in 1980s: Experimental demonstration of bootstrap current; Development of ideal MHD codes that agreed with experimental results. Development of stead-state power plant concepts (ARIES-I and SSTR) based on the trade-off of bootstrap current fraction and plasma  A dramatic change occurred in 1990: Introduction of Advanced Tokamak  ARIES-I was still too large and too expensive: Utilize advance technologies: Utilized high field magnets to improve the power density Introduced SiC composite to achieve excellent safety & environmental characteristics.  ARIES-I was still too large and too expensive: Utilize advance technologies: Utilized high field magnets to improve the power density Introduced SiC composite to achieve excellent safety & environmental characteristics.

Increase Power Density Directions for Improvement What we pay for,V FPC r  Power density, 1/V p r >  r ~  r <  Improvement “saturates” at ~5 MW/m 2 peak wall loading (for a 1GWe plant). A steady-state, first stability device with Nb 3 Sn technology has a power density about 1/3 of this goal. Big Win Little Gain Decrease Recirculating Power Fraction Improvement “saturates” about Q ~ 40. A steady-state, first stability device with Nb 3 Sn Tech. has a recirculating fraction about 1/2 of this goal. High-Field Magnets ARIES-I with 19 T at the coil (cryogenic). Advanced SSTR-2 with 21 T at the coil (HTS). High bootstrap, High  2 nd Stability: ARIES-II/IV Reverse-shear: ARIES-RS, ARIES-AT, A-SSRT2

Reverse Shear Plasmas Lead to Attractive Tokamak Power Plants First Stability Regime  Does Not need wall stabilization (Resistive-wall modes)  Limited bootstrap current fraction (< 65%), limited  N = 3.2 and  =2%,  ARIES-I: Optimizes at high A and low I and high magnetic field. Reverse Shear Regime  Requires wall stabilization (Resistive-wall modes)  Excellent match between bootstrap & equilibrium current profile at high   Internal transport barrier  ARIES-RS (medium extrapolation):  N = 4.8,  =5%, P cd =81 MW (achieves ~5 MW/m 2 peak wall loading.)  ARIES-AT (aggressive extrapolation):  N = 5.4,  =9%, P cd =36 MW (high  is used to reduce peak field at magnet)

Approaching COE insensitive of current drive Approaching COE insensitive of power density Evolution of ARIES Designs 1 st Stability, Nb 3 Sn Tech. ARIES-I’ Major radius (m)8.0   ) 2% (2.9) Peak field (T)16 Avg. Wall Load (MW/m 2 )1.5 Current-driver power (MW)237 Recirculating Power Fraction0.29 Thermal efficiency0.46 Cost of Electricity (c/kWh)10 Reverse Shear Option High-Field Option ARIES-I % (3.0) ARIES-RS 5.5 5% (4.8) ARIES-AT % (5.4)

ARIES designs Correspond to Experimental Progress in a Burning Plasma Experiment Improved Physics “Conventional” Pulsed plasma: Explore burn physics ARIES-RS (reverse shear): Improvement in  and current-drive power Approaching COE insensitive of current drive Explore reversed-shear plasma a) Higher Q plasmas b) At steady state ARIES-AT (aggressive reverse shear): Approaching COE insensitive of power density High  is used to reduce toroidal field Explore envelopes of steady-state reversed-shear operation Demonstrate steady-state first- stability operation. Pulsar (pulsed-tokamak): Trade-off of  with bootstrap Expensive PF system, under-performing TF ARIES-I (first-stability steady-state): Trade-off of  with bootstrap High-field magnets to compensate for low 

Evolution of the Vision of Fusion Power Plants 2. Fusion “Technologies”

ARIES-I Introduced SiC Composites as A High- Performance Structural Material for Fusion  Excellent safety & environmental characteristics (very low activation and very low afterheat).  High performance due to high strength at high temperatures (>1000 o C).  Large world-wide program in SiC:  New SiC composite fibers with proper stoichiometry and small O content.  New manufacturing techniques based on polymer infiltration or CVI result in much improved performance and cheaper components.  Recent results show composite thermal conductivity (under irradiation) close to 15 W/mK which was used for ARIES-I.

Continuity of ARIES research has led to the progressive refinement of research ARIES-I: SiC composite with solid breeders Advanced Rankine cycle ARIES-I: SiC composite with solid breeders Advanced Rankine cycle Starlite & ARIES-RS: Li-cooled vanadium Insulating coating Starlite & ARIES-RS: Li-cooled vanadium Insulating coating ARIES-ST: Dual-cooled ferritic steel with SiC inserts Advanced Brayton Cycle at  650 o C ARIES-ST: Dual-cooled ferritic steel with SiC inserts Advanced Brayton Cycle at  650 o C ARIES-AT: LiPb-cooled SiC composite Advanced Brayton cycle with  = 59% ARIES-AT: LiPb-cooled SiC composite Advanced Brayton cycle with  = 59% Many issues with solid breeders; Rankine cycle efficiency saturated at high temperature Max. coolant temperature limited by maximum structure temperature High efficiency with Brayton cycle at high temperature

Advanced Brayton Cycle Parameters Based on Present or Near Term Technology Evolved with Expert Input from General Atomics *  Key improvement is the development of cheap, high-efficiency recuperators. Recuperator Intercooler 1Intercooler 2 Compressor 1 Compressor 2 Compressor 3 Heat Rejection HX W net Turbine Blanket Intermediate HX 5' 1 2 2' ' 9' 10 6 T S Divertor LiPb Blanket Coolant He Divertor Coolant 11

ARIES-ST Features a High-Performance Ferritic Steel Blanket Typically, the coolant outlet temperature is limited to the max. operating temperature of structural material (550 o C for ferritic steels). By using a coolant/breeder (LiPb), cooling the structure by He gas, and SiC insulators, a coolant outlet temperature of 700 o C is achieved for ARIES-ST leading to 45% thermal conversion efficiency. OB Blanket thickness 1.35 m OB Shield thickness 0.42 m Overall TBR 1.1

 Simple, low pressure design with SiC structure and LiPb coolant and breeder. Outboard blanket & first wall ARIES-AT 2 : SiC Composite Blankets  Simple manufacturing technique.  Very low afterheat.  Class C waste by a wide margin.  LiPb-cooled SiC composite divertor is capable of 5 MW/m 2 of heat load.  Innovative design leads to high LiPb outlet temperature (~1,100 o C) while keeping SiC structure temperature below 1,000 o C leading to a high thermal efficiency of ~ 60%.

Innovative Design Results in a LiPb Outlet Temperature of 1,100 o C While Keeping SiC Temperature Below 1,000 o C Two-pass PbLi flow, first pass to cool SiC f /SiC box second pass to superheat PbLi Bottom Top PbLi Outlet Temp. = 1100 °C Max. SiC/PbLi Interf. Temp. = 994 °C Max. SiC/SiC Temp. = 996°C PbLi Inlet Temp. = 764 °C

Evolution of the Vision of Fusion Power Plants 3. Attractiveness

Our Vision of Magnetic Fusion Power Systems Has Improved Dramatically in the Last Decade, and Is Directly Tied to Advances in Fusion Science & Technology Estimated Cost of Electricity (c/kWh)Major radius (m) Approaching COE insensitive of power density High Thermal Efficiency High  is used to lower magnetic field

Radioactivity Levels in Fusion Power Plants Are Very Low and Decay Rapidly after Shutdown After 100 years, only 10,000 Curies of radioactivity remain in the 585 tonne ARIES-RS fusion core. After 100 years, only 10,000 Curies of radioactivity remain in the 585 tonne ARIES-RS fusion core.  SiC composites lead to a very low activation and afterheat.  All components of ARIES-AT qualify for Class-C disposal under NRC and Fetter Limits. 90% of components qualify for Class-A waste.  SiC composites lead to a very low activation and afterheat.  All components of ARIES-AT qualify for Class-C disposal under NRC and Fetter Limits. 90% of components qualify for Class-A waste.

Evolution of the Vision of Fusion Power Plants 4. Critical R&D Issues

Advances in plasma physics has led to a dramatic improvement in our vision of fusion systems  Attractive visions for ST and stellarator configurations also exist  Attractive visions for tokamak exist.  The main question is to what extent the advanced tokamak modes can be achieved in a burning plasma: What is the achievable  N (macroscopic stability) Can the necessary pressure profiles realized in the presence of strong a heating (microturbulence & transport) What is the best regime of operation for the divertor (plasma-material interaction).  Attractive visions for tokamak exist.  The main question is to what extent the advanced tokamak modes can be achieved in a burning plasma: What is the achievable  N (macroscopic stability) Can the necessary pressure profiles realized in the presence of strong a heating (microturbulence & transport) What is the best regime of operation for the divertor (plasma-material interaction).

Fusion “technologies” are the pace setting element of fusion development  Pace of “Technology” research has been considerably slower than progress in plasma physics.  Most of technology research has been focused on ITER (real technology).  R&D in fusion power technologies (fusion engineering sciences) have been limited: Experimental data is mainly from Europe, but program focus is different. We need fresh blood, small programs to test concepts, develop data bases, …  Pace of “Technology” research has been considerably slower than progress in plasma physics.  Most of technology research has been focused on ITER (real technology).  R&D in fusion power technologies (fusion engineering sciences) have been limited: Experimental data is mainly from Europe, but program focus is different. We need fresh blood, small programs to test concepts, develop data bases, …