Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.

Slides:



Advertisements
Similar presentations
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
Advertisements

The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K. Cleary 1, C.R. Lawrence 1, J.A. Marshall 2,
June 4, 2015Dusty2004 Spitzer Space TelescopeCen A Elliptical and (other) early-type galaxies T. Wiklind ESA/STScI.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Magic of (sub)mm L _FIR = 1.5e12 L _sun 3mJy  Distance independent probe of universe  Biased to > ULIRGs.
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
Active Galactic Nuclei Ay 16, April 8, AGN DEFINITION PROPERTIES GRAVITATIONAL LENSES BLACK HOLES MODELS.
Jerusalem 2004 Hans-Walter Rix - MPIA The Evolution of the High-z Galaxy Populations.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
ESO Galaxy Formation: The Radio Decade (Dense Gas History of the Universe) Chris Carilli (NRAO) Santa Fe, March 2011 Power of radio astronomy: dust, cool.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ Iono ea 2007 Salome ea
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Dust emission from powerful high-z starbursts and QSOs The combined power of submillimeter and mid-IR studies for tracing the most powerful starbursts.
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Vandana Desai Spitzer Science Center with Lee Armus, Colin Borys, Mark Brodwin, Michael Brown, Shane Bussmann, Arjun Dey, Buell Jannuzzi, Emeric Le Floc’h,
Studying the gas, dust, and star formation in the first galaxies at cm and mm wavelengths Chris Carilli, KIAA-PKU reionization workshop, July 2008  QSO.
1 National Radio Astronomy Observatory – Town Hall AAS 211 th Meeting – Austin, Texas Science Synergies with NRAO Telescopes Chris Carill NRAO.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
“Nature and Descendants of Sub-mm and Lyman-break Galaxies in Lambda-CDM” Juan Esteban González Collaborators: Cedric Lacey, Carlton Baugh, Carlos Frenk,
Molecular Gas in Low-Redshift Radio Galaxies & Quasi-Stellar Objects Detected by IRAS Aaron Evans (Stony Brook) J. Mazzarella (IPAC) J. Surace (SSC) D.
FRENEL Meeting, Nice, September 2009 FRESNEL Imager: Extragalactic Science in the UV-Optical domains Roser Pelló Laboratoire d’Astrophysique de Toulouse-Tarbes.
Quasars at the Cosmic Dawn Yuexing Li Penn State University Main Collaborators: Lars Hernquist (Harvard) Volker Springel (Heidelberg) Tiziana DiMatteo.
Exploringthe μJy and nJy Sky with the EVLA and the SKA Ken Kellermann NRAO East Asia SKA Workshop December 3, /2/20111KASI, Daejeon, Korea.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Radio astronomical probes of the 1 st galaxies Chris Carilli, Aspen, February 2008  Current State-of-the-Art: gas, dust, star formation in QSO host galaxies.
ESO Radio observations of the formation of the first galaxies and supermassive black holes Chris Carilli (NRAO) Keck Institute, August 2010 Current State-of-Art:
Obscured Star Formation in Small Galaxies out to z
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
The Evolution of Galaxies: From the Local Group to the Epoch of Reionization Fabian Walter National Radio Astronomy Observatory.
Cosmic ‘Background’Radiation Franceschini The Gunn Peterson Effect Fan et al 2003 z=6.3 z=5.80 z=5.82 z=5.99 z=6.28 Cosmic reionization at z =6.3.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
ESO Radio observations of the formation of the first galaxies and supermassive Black Holes Chris Carilli (NRAO) Notre Dame Astrophysics March 30, 2010.
ESO The other side of galaxy formation: radio line and continuum ‘Great Surveys’ Santa Fe November 2008 Chris Carilli NRAO.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Galaxy Evolution and WFMOS
EVN 2015 Starburst Galaxies
Dust, cool gas, and star formation in z>6 SMBH host galaxies
Evidence for a Population of high redshift Submm Galaxies
ALMA studies of the first galaxies
Probing the Faint Radio Population
Xiaohui Fan University of Arizona June 21, 2004
ALMA: Imaging the cold Universe
Giant Clouds and Star Clusters in the Antennae
1.4 GHz Source Counts (Hopkins 2000)
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
ALMA and Cosmology The high-redshift Universe Advantages of mm/submm
HERSCHEL and Galaxies/AGN “dust and gas”
Magic of (sub)mm Biased to > ULIRGs L_FIR = 1.5e12 L_sun 3mJy
A Population of Old and Massive Galaxies at z > 5
ALMA: Imaging the cold Universe
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Chris Carilli (NRAO) AAS06 NRAO 50th.
Black Holes in the Deepest Extragalactic X-ray Surveys
Observing Molecules in the EoR
Center for Computational Physics
ALMA: Resolving (optically) obscured galaxy formation
Presentation transcript:

Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing photons (dust obscuration?) Far IR = bolometric (covering factor?) Radio continuum (synchrotron) = empirical (radio – FIR correlation?) Radio free-free/RRLs = ionizing photons (sensitivity, spectral confusion?) All relate mostly to massive stars (> 5 M _sun ) => total SFR depends on extrapolation of IMF, and temporal behavior

Cosmic (proper) time

Radio-FIR correlation: tightest correlation in extragalactic astronomy Separating FF – Synch is difficult Synch. Free-free Thermal dust M82

SKA in context z=8 EVLA

Cosmic ‘background’: ½ starlight reprocessed by dust

Evolution of space density of luminous QSOs (Fan et al. 2003) Madau-Lilly plot: evolution of cosmic star formation rate density

Galaxy populations at high redshift (2 < z < 7) Radio galaxies: only z > 0.5 galaxies before 90’s UV dropouts/Ly-break: broadband colors Ly  : narrow band imaging Submm: (sub)mm bolometer camera imaging QSO Hosts: HST, (sub)mm QSO absorption lines: metalicity evolution, parent galaxies z=0.3 to 2: EROs, faint blue, Butcher-Oemler,  Jy radio sources, ISO GRB hosts Pop III stars: early reionization by 100 M _sun stars in minihalos at z = 20?

z = kpc High z radio galaxies (L _1.4 > 1e28 W/Hz) 10kpc z= z= z=

K-z relation: HzRGs = Giant Ellipticals z>8 radio galaxies?

Alignment effect: Jet-induced star formation? Clumpy morphologies => forming ellipticals? z=2.2

Alignement effect: Radio-Xray Radio-Ly  halo 18kpc

Clustering on Mpc scales around HzRGs ( z=2.2) => protoclusters?

Dusty radio galaxies at high z? Overdensity of submm galaxies?

UV dropouts/Ly break (Ly 

Star formation rates in Ly break galaxies Extinction uncorrected corrected

Correlation between extinction and SFR => L _UV is independent of SFR

Ly break galaxies = highly biased (ie. clustered) galaxy formation

Ly break galaxies with Ly  halos

SUBMM galaxies: dust obscured galaxy formation HDF - optical HDF – 850  m

Dust obscured star formation dominates at z>2? Submm galaxies: L _FIR = 1e12 to 1e13 L _sun => SFR = 100 to 1000 M _sun /yr M _dust = 1e8-9 M _sun

Magic of submm 350 GHz 250 GHz

Brightest mm source in HDF: K = 23.5

Radio photometric redshifts: two colors, or ‘drop- outs’

Redshift distribution

Next step: photometric redshifts

CO emission => M(H _2 ) = 1e10-11 M _sun

Submm galaxies

QSO host galaxies Most low z spheroidal galaxies have SMBH M _BH = M _bulge => ‘Causal connection between SMBH and spheroidal galaxy formationn’ (Gebhardt et al. 2002)?

30% of luminous QSOs have S _250 > 2 mJy  L_FIR > 7e12 M _sun Dust heating: starburst or AGN? z=6.4 S _250 =5.5mJy

Radio-to-IR SED = M82

CO(1-0) w. VLA: L _FIR = 3e13 L _sun M(H _2 ) = 1e11 M _sun

A Molecular Einstein Ring: VLA 45 GHz observations of CO2-1 emission from the gravitationally lensed QSO at z=4.12 (Carilli et al. 2003) Keck RbandVLA CO2-1 2”

Using the gravitational lens to probe sub-kpc scales in : A starburst disk surrounding a SMBH => coeval SMBH – galaxy formation? Optical QSO Starburst disk: molecular gas, dust, radio continuum

Starbursts in QSO host galaxies? 30% of luminous QSOs (M _B < -27) have L _FIR = 1e13 L _sun (independent of redshift) Z= 2 sample: All L _FIR luminous QSOs detected at 1.4 GHz, and in all cases ‘q’ consistent with star forming galaxy (2.3 +/- 0.3)

Questions Relationships between different high z galaxy types? Halos masses and end-products (spirals, ellipticals)? Is > 1000 M _sun /yr possible, sustainable (Heckman limit)? IMF: top heavy? Star formation in extreme environments (P=100xISM)? Timescales? Dust formation at z>6: >1e8 M _sun in < 0.7 Gyr? What fraction of high z galaxy formation is dust-obscured? Submm galaxies – redshift distribution? radio – FIR correlation: mechanism? vs. redshift? M-  relation – coeval SMBH and galaxy formation? QSO dust heating: star formation or AGN? L _FIR from S _250 ? X = gas mass to CO luminosity conversion? L _FIR to dust mass conversion? Pop III stars, minihalos, and first luminous objects: role of radio astronomy?