CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California

Slides:



Advertisements
Similar presentations
State Estimation and Kalman Filtering CS B659 Spring 2013 Kris Hauser.
Advertisements

PROBABILITY. Uncertainty  Let action A t = leave for airport t minutes before flight from Logan Airport  Will A t get me there on time ? Problems :
SA-1 Probabilistic Robotics Planning and Control: Partially Observable Markov Decision Processes.
LECTURE 11: BAYESIAN PARAMETER ESTIMATION
Uncertainty Everyday reasoning and decision making is based on uncertain evidence and inferences. Classical logic only allows conclusions to be strictly.
Hidden Markov Models Reading: Russell and Norvig, Chapter 15, Sections
Introduction of Probabilistic Reasoning and Bayesian Networks
1 Slides for the book: Probabilistic Robotics Authors: Sebastian Thrun Wolfram Burgard Dieter Fox Publisher: MIT Press, Web site for the book & more.
Bayesian Robot Programming & Probabilistic Robotics Pavel Petrovič Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics
Bayes Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics TexPoint fonts used in EMF. Read the.
Recursive Bayes Filtering Advanced AI
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
CPSC 422 Review Of Probability Theory.
Probability.
1.Examples of using probabilistic ideas in robotics 2.Reverend Bayes and review of probabilistic ideas 3.Introduction to Bayesian AI 4.Simple example.
Probabilistic Methods in Mobile Robotics. Stereo cameras Infra-red Sonar Laser range-finder Sonar Tactiles.
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
City College of New York 1 Dr. John (Jizhong) Xiao Department of Electrical Engineering City College of New York A Taste of Localization.
Probability: Review TexPoint fonts used in EMF.
KI2 - 2 Kunstmatige Intelligentie / RuG Probabilities Revisited AIMA, Chapter 13.
1 Bayesian Reasoning Chapter 13 CMSC 471 Adapted from slides by Tim Finin and Marie desJardins.
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
Representing Uncertainty CSE 473. © Daniel S. Weld 2 Many Techniques Developed Fuzzy Logic Certainty Factors Non-monotonic logic Probability Only one.
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotics Research Laboratory University of Southern California
CS Bayesian Learning1 Bayesian Learning. CS Bayesian Learning2 States, causes, hypotheses. Observations, effect, data. We need to reconcile.
Probability and Statistics Review Thursday Sep 11.
Bayesian Filtering for Robot Localization
Probability in Robotics
Lab 4 1.Get an image into a ROS node 2.Find all the orange pixels (suggest HSV) 3.Identify the midpoint of all the orange pixels 4.Explore the findContours.
Estimating parameters in a statistical model Likelihood and Maximum likelihood estimation Bayesian point estimates Maximum a posteriori point.
Visibility Graph. Voronoi Diagram Control is easy: stay equidistant away from closest obstacles.
1 Robot Environment Interaction Environment perception provides information about the environment’s state, and it tends to increase the robot’s knowledge.
1 Reasoning Under Uncertainty Artificial Intelligence Chapter 9.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.2: Recap on Probability Theory Jürgen Sturm Technische Universität.
Uncertainty. Assumptions Inherent in Deductive Logic-based Systems All the assertions we wish to make and use are universally true. Observations of the.
Cognitive Computer Vision Kingsley Sage and Hilary Buxton Prepared under ECVision Specific Action 8-3
The famous “sprinkler” example (J. Pearl, Probabilistic Reasoning in Intelligent Systems, 1988)
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.3: Reasoning with Bayes Law Jürgen Sturm Technische Universität.
4 Proposed Research Projects SmartHome – Encouraging patients with mild cognitive disabilities to use digital memory notebook for activities of daily living.
Probability in Robotics Trends in Robotics Research Reactive Paradigm (mid-80’s) no models relies heavily on good sensing Probabilistic Robotics (since.
Decision Making Under Uncertainty CMSC 471 – Spring 2014 Class #12– Thursday, March 6 R&N, Chapters , material from Lise Getoor, Jean-Claude.
Probabilistic Robotics Introduction.  Robotics is the science of perceiving and manipulating the physical world through computer-controlled devices.
Probability in Robotics Trends in Robotics Research Reactive Paradigm (mid-80’s) no models relies heavily on good sensing Probabilistic Robotics (since.
Probabilistic Robotics
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
CSE 473 Uncertainty. © UW CSE AI Faculty 2 Many Techniques Developed Fuzzy Logic Certainty Factors Non-monotonic logic Probability Only one has stood.
Probabilistic Robotics Introduction. SA-1 2 Introduction  Robotics is the science of perceiving and manipulating the physical world through computer-controlled.
Probabilistic Robotics Probability Theory Basics Error Propagation Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics.
General approach: A: action S: pose O: observation Position at time t depends on position previous position and action, and current observation.
Matching ® ® ® Global Map Local Map … … … obstacle Where am I on the global map?                                   
Pattern Recognition Probability Review
CSE 468/568 Deadlines Lab1 grades out tomorrow (5/1) HW2 grades out by weekend Lab 3 grades out next weekend HW3 – Probability homework out Due 5/7 FINALS:
Review of Probability.
Where are we in CS 440? Now leaving: sequential, deterministic reasoning Entering: probabilistic reasoning and machine learning.
Reasoning Under Uncertainty: Conditioning, Bayes Rule & Chain Rule
Markov ó Kalman Filter Localization
State Estimation Probability, Bayes Filtering
Probabilistic Reasoning over Time
Probability Review 11/22/2018.
Uncertainty in AI.
CSE-490DF Robotics Capstone
CS 188: Artificial Intelligence Fall 2008
EE-565: Mobile Robotics Non-Parametric Filters Module 2, Lecture 5
Probability Review 2/24/2019.
LECTURE 07: BAYESIAN ESTIMATION
Probability in Robotics
Reinforcement Learning Dealing with Partial Observability
basic probability and bayes' rule
Presentation transcript:

CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California

Probabilistic Robotics Key idea: Explicit representation of uncertainty using the calculus of probability theory Perception = state estimation Action = utility optimization

Advantages and Pitfalls Can accommodate inaccurate models Can accommodate imperfect sensors Robust in real-world applications Best known approach to many hard robotics problems Computationally demanding False assumptions Approximate

Pr(A) denotes probability that proposition A is true. Axioms of Probability Theory

A Closer Look at Axiom 3 B

Using the Axioms

Discrete Random Variables X denotes a random variable. X can take on a finite number of values in {x 1, x 2, …, x n }. P(X=x i ), or P(x i ), is the probability that the random variable X takes on value x i. P( ) is called probability mass function. E.g..

Continuous Random Variables X takes on values in the continuum. p(X=x), or p(x), is a probability density function. E.g. x p(x)

Joint and Conditional Probability P(X=x and Y=y) = P(x,y) If X and Y are independent then P(x,y) = P(x) P(y) P(x | y) is the probability of x given y P(x | y) = P(x,y) / P(y) P(x,y) = P(x | y) P(y) If X and Y are independent then P(x | y) = P(x)

Law of Total Probability Discrete caseContinuous case

Reverend Thomas Bayes, FRS ( ) Clergyman and mathematician who first used probability inductively and established a mathematical basis for probability inference

Bayes Formula

Normalization Algorithm:

Conditioning Total probability: Bayes rule and background knowledge:

Simple Example of State Estimation Suppose a robot obtains measurement z What is P(open|z)?

Causal vs. Diagnostic Reasoning P(open|z) is diagnostic. P(z|open) is causal. Often causal knowledge is easier to obtain. Bayes rule allows us to use causal knowledge: count frequencies!

Example P(z|open) = 0.6P(z|  open) = 0.3 P(open) = P(  open) = 0.5 z raises the probability that the door is open.

Combining Evidence Suppose our robot obtains another observation z 2. How can we integrate this new information? More generally, how can we estimate P(x| z 1...z n ) ?

Recursive Bayesian Updating Markov assumption: z n is independent of z 1,...,z n-1 if we know x.

Example: Second Measurement P(z 2 |open) = 0.5P(z 2 |  open) = 0.6 P(open|z 1 )= 2/3 z 2 lowers the probability that the door is open.

Actions Often the world is dynamic since –actions carried out by the robot, –actions carried out by other agents, –or just the time passing by change the world. How can we incorporate such actions?

Typical Actions The robot turns its wheels to move The robot uses its manipulator to grasp an object Plants grow over time… Actions are never carried out with absolute certainty. In contrast to measurements, actions generally increase the uncertainty.

Modeling Actions To incorporate the outcome of an action u into the current “belief”, we use the conditional pdf P(x|u,x’) This term specifies the pdf that executing u changes the state from x’ to x.

Example: Closing the door

State Transitions P(x|u,x’) for u = “close door”: If the door is open, the action “close door” succeeds in 90% of all cases.

Integrating the Outcome of Actions Continuous case: Discrete case:

Example: The Resulting Belief