MIT Ultrafast Optics & Quantum Electronics Group Femtosecond Technologies for Optical clocks, Timing Distribution and RF Synchronization J.-W. Kim, F.

Slides:



Advertisements
Similar presentations
Mostly by Gwyn Williams and the JLab Team, Presented by D. Douglas Working Group 4 Diagnostics & Synchronization Requirements Where we are and what needs.
Advertisements

In Search of the “Absolute” Optical Phase
Femtosecond Pump / Probe Operation and Plans at the LCLS
Particle Accelerator Engineering, London, October 2014 Phase Synchronisation Systems Dr A.C. Dexter Overview Accelerator Synchronisation Examples Categories.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Timing and Synchronization
Laser / RF Timing (Engineering of Femtosecond Timing Systems)
Leo Holberg et al (NIST)
Progress in sub-picosecond event timing Ivan Prochazka*, Petr Panek presented at 16 th International Workshop on Laser Ranging Poznan, Poland, October.
Laser to RF synchronisation A.Winter, Aachen University and DESY Miniworkshop on XFEL Short Bunch Measurement and Timing.
Synchronization System for LUX John Staples, LBNL 26 July 2004.
RF Synchronisation Issues
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
Stefan Simrock 3 rd LC School, Oak Brook, IL, USA, 2008, Radio Frequency Systems 1 Timing and Synchronization S. Simrock and Axel Winter DESY, Hamburg,
Time-Bandwidth Products getting the average power of ultrafast DPSS lasers from hundreds of mW to tens of Watts by Dr. Thomas Ruchti CERN, April 2006 SESAM.
LLRF Phase Reference System The LCLS linac is broken down into 4 separate linac sections. The LCLS injector will reside in an off axis tunnel at the end.
RF Synchronization, control and stability Takuya Natsui.
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
1 Timing and RF Distribution NLC -> ILC Josef Frisch.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
1 High-Speed Broadband Polarization- Independent Optical Clock Recovery in a Silicon Detector OFC 2006, OWW4 March 8, 2006 Amir Ali Ahmadi Reza Salem Thomas.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe.
W.S. Graves, ASAC Review, Sept 18-19, 2003 Accelerator Overview Goals for proposal Description of technical components: injector, linac, compressors, etc.
Effects of EDFA Gain on RF Phase Noise in a WDM Fiber Optic Link John Summerfield, Mehdi Shadaram, and Jennifer Bratton Photonics Research Laboratory Department.
Progress in CW-Timing Distribution for Future Light Sources RUSSELL WILCOX, GANG HUANG, LARRY DOOLITTLE, JOHN BYRD ICFA WORKSHOP ON FUTURE LIGHT SOURCES.
Chapter 10 Optical Communication Systems
Volker Schlott SV84, LL-RF Workshop, CERN, October 11 th, 2005 Femto-Second Stable Timing and Synchronization Systems Volker Schlott, PSI Motivation –
Holger Schlarb, DESY Normal conducting cavity for arrival time stabilization.
Intra-cavity Pulse Shaping of Mode-locked Oscillators Shai Yefet, Naaman Amer and Avi Pe’er Department of physics and BINA Center of nano-technology, Bar-Ilan.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Lasers and RF-Timing Franz X. Kaertner
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
Injection Locked Oscillators Optoelectronic Applications E. Shumakher, J. Lasri, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION.
W.S. Graves DESY-Zeuthen 8/20031 Study for an xray laser at MIT Bates Laboratory William S. Graves MIT-Bates Presented at ICFA S2E workshop DESY-Zeuthen.
W.S. Graves ASAC Review Sept 18-19, 2003 R&D at Bates William S. Graves MIT-Bates Laboratory Presentation to MIT X-ray laser Accelerator Science Advisory.
MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research.
LCLS_II High Rep Rate Operation and Femtosecond Timing J. Frisch 7/22/15.
FLS 2010 Workshop March 4 th, 2010 Recent Progress in Pulsed Optical Synchronization Systems Franz X. Kärtner Department of Electrical Engineering and.
Recent results of the femto-second synchronization system
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
On the Synchronization of lasers for FEL facility M.Danailov Electronic versus direct optical locking Direct optical locking in master-slave configuration.
Femtosecond Optical Synchronization System for FLASH
Femtosecond phase measurement Alexandra Andersson CLIC Beam Instrumentation workshop.
BEPC II TIMING SYSTEM EPICS Seminar Presented by Ma zhenhan IHEP 20.August 2002.
Long-distance optical stabilization with femtosecond resolution
February 17-18, 2010 R&D ERL Brian Sheehy R&D ERL Laser and laser light transport Brian Sheehy February 17-18, 2010 Laser and Laser Light Transport.
High precision phase monitoring Alexandra Andersson, CERN Jonathan Sladen, CERN This work is supported by the Commission of the European Communities under.
Summary Timing and Diagnostics 1 Franz X. Kärtner and 2 Steve Jamison 1 CFEL - DESY and MIT, 2 Daresbury.
AWAKE synchronization with SPS Andy Butterworth, Thomas Bohl (BE/RF) Thanks to: Urs Wehrle (BE/RF), Ioan Kozsar, Jean-Claude Bau (BE/CO)
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Status of the SPARC laser and “dazzler” experiments
Synchronization issues
Status of SPARC synchronization system and possible upgrades
LCLS_II High Rep Rate Operation and Femtosecond Timing
UK FEL development package WP6:
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
ILC/ATF-2 Laser System Sudhir Dixit (JAI, Oxford)
Integrated Semiconductor Modelocked Lasers
Timing and synchronization at SPARC
RF Synchronisation Issues
WP02 PRR: Master Oscillator and RF Reference Distribution
Optoelectronic Microwave Oscillators
Principle of Mode Locking
Phase-Locked Loop Design
LCLS RF Stability Requirements
Squeezed Light Techniques for Gravitational Wave Detection
Precision Control Optical Pulse Train
Presentation transcript:

MIT Ultrafast Optics & Quantum Electronics Group Femtosecond Technologies for Optical clocks, Timing Distribution and RF Synchronization J.-W. Kim, F. Ö. Ilday, T. Schibli, F. G. Grawert, J. Chen, O. D. Muecke, M. H. Perrot, and F. X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics W. Graves, D. Moncton Bates Linear Accelerator Center Massachusetts Institute of Technology

MIT Ultrafast Optics & Quantum Electronics Group Femtosecond Timing Distribution & Synchronization Synchronization of multiple events at multiple locations in a FEL facility with femtosecond precision is required. We envision that: –A master microwave oscillator that “keeps the time”, –A master mode-locked laser locked to this oscillator, –Stabilized fiber links that transport the clock signal in the form of a pulse train to multiple locations, –A scheme that locks other lasers to this signal and/or generates an RF signal form a complete scheme with eventually few fs precision.

MIT Ultrafast Optics & Quantum Electronics Group MIT X-Ray Laser Project Photo-Inj.  t = 10 fs Gun Optical master oscillator Mode-locked laser Frequency Standard Pulsed Klystron LINAC RF-components, GHz  t = 10 fs Undulator HHG-Seed  t = 10 fs Opt. Probe  t = 10 fs Timing stabilized fiber links Optical Clock Timing Distribution High Power Few-Cycle Lasers RF-Synch. X-rays 0.1nm Less than 10 fs timing jitter between lasers is required.

MIT Ultrafast Optics & Quantum Electronics Group Master microwave oscillator Locking and sync: laser to laser optically (< 1 fs) laser to RF (< 100 fs) Timing-distribution via fiber-links Low jitter modelocked lasers

MIT Ultrafast Optics & Quantum Electronics Group Master Microwave Oscillator Extremely good microwave oscillators are commercially available. Jitter < 6 fs from 10 Hz to 10 MHz. Development effort not necessary at this stage.

MIT Ultrafast Optics & Quantum Electronics Group Master microwave oscillator Locking and sync: laser to laser optically (< 1 fs) laser to RF (< 100 fs) Timing-distribution via fiber-links Low jitter modelocked lasers

MIT Ultrafast Optics & Quantum Electronics Group Output ( nm) t Balanced Cross-Correlator Cr:fo nm Ti:sa nm

MIT Ultrafast Optics & Quantum Electronics Group Balanced Detector Output

MIT Ultrafast Optics & Quantum Electronics Group Residual Timing Jitter The residual out-of-loop timing-jitter measured from 10mHz to 2.3 MHz is 300 as (a tenth of an optical cycle) T.R. Schibli et al., Opt. Lett. 28, 947 (2003)

MIT Ultrafast Optics & Quantum Electronics Group Master microwave oscillator Locking and sync: laser to laser optically (< 1 fs) RF to laser (< 100 fs) Timing-distribution via fiber-links Low jitter modelocked lasers

MIT Ultrafast Optics & Quantum Electronics Group Laser and RF Synchronization Requirements: -Modular building block for laser-RF and laser-laser synchronizations. -Low timing jitter (< 10 fs) -Long-term drift-free

MIT Ultrafast Optics & Quantum Electronics Group Direct Detection to Extract RF from Pulse Train Optical Pulse Train (time domain) T R = 1/f R f ….. fRfR 2f R nf R (n+1)f R BPF Photodiode f nf R t T R /n LNA

MIT Ultrafast Optics & Quantum Electronics Group Potential Limitations of Direct Detection Excess phase noise in photo-detection process –Amplitude-to-phase conversion in photo-detection –Pulse distortions due to photo-detector nonlinearities E.N. Ivanov et al., IEEE JSTQE 9, 1059 (2003) Long-term stability issue Thermal drift in photodiode (semiconductor device)  A new synchronization scheme for both lower timing jitter and long-term stability is highly desirable.

MIT Ultrafast Optics & Quantum Electronics Group Locking the RF to the Pulse Train 180 o VCO Amplitude modulators Photo- detectors V f = f 0 + KV Convert timing info to intensity imbalance

MIT Ultrafast Optics & Quantum Electronics Group Locking the RF to the Pulse Train Convert timing info to intensity imbalance Amplitude modulators take “derivative” of the signal intensity Differentiation eliminates effect of detector problems o f = f 0 + KV EARL Y ARRIVAL

MIT Ultrafast Optics & Quantum Electronics Group o f = f 0 + KV Locking the RF to the Pulse Train Convert timing info to intensity imbalance Amplitude modulators take “derivative” of the signal intensity Differentiation eliminates effect of detector problems LATE ARRIVAL

MIT Ultrafast Optics & Quantum Electronics Group 0 f = f 0 + KV 180 o Locking the RF to the Pulse Train JUS T ON TIME Convert timing info to intensity imbalance PLL locks the VCO to the pulse train

MIT Ultrafast Optics & Quantum Electronics Group Implementation sin 2 (  /2) cos 2 (  /2)  : phase difference between two beams Input Phase Modulator Use a Sagnac-loop interferometer for interferometric stability Eventually use a fiber loop

MIT Ultrafast Optics & Quantum Electronics Group Implementation RF /2 f = f 0 + KV LF 2GHz phase modulator Ti:sapphire ML-laser F(s) Loop filter t  VCO Balanced detector V LF  /2 100MHz Rep rate t  The pulses sit on the zero-crossings of VCO output when it is locked.

MIT Ultrafast Optics & Quantum Electronics Group Testing the Scheme 1 - Phase Noise of the System (laser noise present)

MIT Ultrafast Optics & Quantum Electronics Group Noise from laser Measured Phase Noise

MIT Ultrafast Optics & Quantum Electronics Group Testing the Scheme 2 - Residual phase noise (laser noise subtracted)

MIT Ultrafast Optics & Quantum Electronics Group <60 fs Timing jitter (100Hz-10MHz) J. Kim et al., Opt. Lett., in press (2004) Measured Phase Noise

MIT Ultrafast Optics & Quantum Electronics Group Higher phase detector gain Better VCO & Optimize PLL BW Toward sub-fs Timing Jitter Fiber loop

MIT Ultrafast Optics & Quantum Electronics Group Modularity: Sync 2 lasers with common VCO Phase modulator ML-laser 1 F(s) VCO Balanced detector Phase modulator ML-laser 2 F(s) Balanced detector Cavity length change by PZT-mounted mirror

MIT Ultrafast Optics & Quantum Electronics Group Master microwave oscillator Locking and sync: laser to laser optically (< 1 fs) laser to RF (< 100 fs) Timing-distribution via fiber-links Low jitter modelocked lasers

MIT Ultrafast Optics & Quantum Electronics Group Timing Stabilized Fiber Links (~1 km) Assuming no fiber length fluctuations faster than 2L/c (~100 kHz) Thermal fluctuations: ~ 20  m (~ 100 fs) over 1 km for 0.1°C Fiber laser or Er/Yb-glass laser

MIT Ultrafast Optics & Quantum Electronics Group 1. Build two copies and cross-correlate the outputs 2. Demonstrate few fs jitter operation stable over days 3. Test in accelerator-like environment Timing Stabilized Fiber Links (~1 km)

MIT Ultrafast Optics & Quantum Electronics Group f R /2 (Nyquist Bandwidth) c/2L Phase Noise of a Free-running Laser

MIT Ultrafast Optics & Quantum Electronics Group Master microwave oscillator Locking and sync: laser to laser optically (< 1 fs) laser to RF (< 100 fs) Timing-distribution via fiber-links Low jitter modelocked lasers

MIT Ultrafast Optics & Quantum Electronics Group Development of Low Jitter, Robust Lasers Very low jitter (< 10 fs) mode-locked lasers needed. Reliable, long-term operation without interruption. No satisfactory source has been demonstrated yet. Which laser is ideal? Work at MIT is on: –Er-fiber lasers –Yb-fiber lasers (similariton or stretched-pulse?) –Er/Yb-glass lasers Optimal laser parameters need to be identified: –Pulse duration –Repetition rate –Central wavelength

MIT Ultrafast Optics & Quantum Electronics Group Stretched-pulse Er-fiber Lasers (1550 nm) Long gain relaxation time => low jitter (Ippen, et al., circa 1994) 100 fs pulses, excellent long-term stability (for weeks), very low cost Can operate at zero dispersion -- to minimize (Gordon-Haus) jitter

MIT Ultrafast Optics & Quantum Electronics Group Yb-fiber Lasers (1040 nm) Long lifetime as well, even better stability. Zero dispersion (stretched-pulse) or large dispersion (similariton) Similaritons are robust against nonlinearity(Ilday, Wise, PRL, 2004)

MIT Ultrafast Optics & Quantum Electronics Group 980nm pump diode Fiber collimator Pump lens Dicroic mirror Erbium-Ytterbium glass Mirror ROC=100mm Mirror ROC=50mm Si/Ge-SBR 1550nm pulsed light Anamorphic prisms Er/Yb:glass Laser (1550 nm) Long gain relaxation time (> ms) reduces jitter submitted to Opt. Lett.

MIT Ultrafast Optics & Quantum Electronics Group 220 fs pulses, self-starting operation Low timing jitter (preliminary result) source: J. Kim Ti:Sapphire Er-Yb:glass Er/Yb:glass Laser (1550 nm)

MIT Ultrafast Optics & Quantum Electronics Group Assessment and “To-do” List Master microwave oscillators commercially available Sub-fs optical sync between lasers demonstrated Sub-100 fs sync between RF-signal and pulse train achieved, to be improved to ~ 1 fs precision Timing-stabilized (< 10 fs) fiber links under development Developing fiber and solid-state lasers for ultra-low jitter, reliable operation

MIT Ultrafast Optics & Quantum Electronics Group Acknowledgment ONR AFOSR NSF MIT Bates Linear Accelerator Center

MIT Ultrafast Optics & Quantum Electronics Group