Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.

Slides:



Advertisements
Similar presentations
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Advertisements

Towards a first Principles Electronic Structure Method Based on Dynamical Mean Field Theory Gabriel Kotliar Physics Department and Center for Materials.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) Collaborators : G. Biroli M. Capone M Civelli.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Collaborators: G.Kotliar, S. Savrasov, V. Oudovenko Kristjan Haule, Physics Department and Center for Materials Theory Rutgers University Electronic Structure.
Ab-initio theory of the electronic structure of strongly correlated materials: examples from across the periodic table. G.Kotliar Physics Department Center.
Dynamical Mean Field Theory from Model Hamiltonian Studies of the Mott Transition to Electronic Structure Calculations Gabriel Kotliar Physics Department.
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Excitation spectra.
Dynamical Mean Field Approach to Strongly Correlated Electrons Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Field.
DMFT approach to many body effects in electronic structure. Application to the Mott transition across the actinide series [5f’s]. G.Kotliar Phyiscs Department.
Dynamical Mean-Field Studies of the Actinide Series Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Correlated.
Dynamical Mean Field Theory (DMFT) Approach to Strongly Correlated Materials G. Kotliar Physics Department and Center for Materials Theory Rutgers SCES04.
Elemental Plutonium: Electrons at the Edge Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Colloquium UT July 2003.
Some Applications of Dynamical Mean Field Theory (DMFT). Density Functional Theory Meets Strong Correlation. Montauk September 5-9 (2006). G.Kotliar Physics.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Brookhaven.
High Temperature Superconductors. What can we learn from the study of the doped Mott insulator within plaquette Cellular DMFT. Gabriel Kotliar Center for.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Northwestern.
Towards an Electronic Structure Method for Correlated Electron Systems based on Dynamical Mean Field Theory G. Kotliar Physics Department and Center for.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Quantum Criticality and Fractionalized Phases. Discussion Leader :G. Kotliar Grodon Research Conference on Correlated Electrons 2004.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Cellular-DMFT approach to the electronic structure of correlated solids. Application to the sp, 3d,4f and 5f electron systems. Collaborators, N.Zein K.
Correlations Magnetism and Structure across the actinide series : a Dynamical Mean Field Theory Perspective Plutonium Futures Asilomar July 9-13 (2006).
Extensions of Single Site DMFT and its Applications to Correlated Materials Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Dynamical Mean Field Theory for Electronic Structure Calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Localization Delocalization Phenomena across the Mott transition:cracking open the f shell G.Kotliar Physics Department and Center for Materials Theory.
Kristjan Haule, Physics Department and Center for Materials Theory
Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Dynamical Mean Field Theory in Electronic Structure Calculations:Applications to solids with f and d electrons Gabriel Kotliar Physics Department and Center.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
CPHT Ecole Polytechnique Palaiseau & SPHT CEA Saclay, France
Theoretical and Experimental Magnetism Meeting Theoretical and Experimental Magnetism Meeting Gabriel Kotliar Rutgers University Support :National Science.
Dynamical Mean Field Theory DMFT and electronic structure calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Challenges in Strongly Correlated Electron Systems: A Dynamical Mean Field Theory Perspective Challenges in Strongly Correlated Electron Systems: A Dynamical.
The alpha to gamma transition in Cerium: a theoretical view from optical spectroscopy Kristjan Haule a,b and Gabriel Kotliar b a Jožef Stefan Institute,
Cluster Dynamical Mean Field Theories: Some Formal Aspects G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
The Mott Transition and the Challenge of Strongly Correlated Electron Systems. G. Kotliar Physics Department and Center for Materials Theory Rutgers PIPT.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mean-Field : Classical vs Quantum Classical case Quantum case Phys. Rev. B 45, 6497 A. Georges, G. Kotliar (1992)
Towards Realistic Electronic Structure Calculations of Correlated Materials Exhibiting a Mott Transition. Gabriel Kotliar Physics Department and Center.
Introduction to Strongly Correlated Electron Materials, Dynamical Mean Field Theory (DMFT) and its extensions. Application to the Mott Transition. Gabriel.
Dynamical Mean Field Theory and Electronic Structure Calculations Gabriel Kotliar Center for Materials Theory Rutgers University.
Theoretical Treatments of Correlation Effects Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Chemical.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective G. Kotliar Physics Department and Center for Materials Theory Rutgers ICAM meeting:
Cellular DMFT studies of the doped Mott insulator Gabriel Kotliar Center for Materials Theory Rutgers University CPTH Ecole Polytechnique Palaiseau, and.
The Mott Transition: a CDMFT study G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
Introduction to Strongly Correlated Electron Materials and to Dynamical Mean Field Theory (DMFT). Gabriel Kotliar Physics Department and Center for Materials.
Correlation Effects in Itinerant Magnets, Application of LDA+DMFT(Dynamical Mean Field Theory) and its static limit the LDA+U method. Gabriel Kotliar Physics.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Spectral Density Functional: a first principles approach to the electronic structure of correlated solids Gabriel Kotliar Physics Department and Center.
Electronic Structure of Strongly Correlated Materials:Insights from Dynamical Mean Field Theory (DMFT). Gabriel Kotliar Physics Department and Center.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
IJS Strongly correlated materials from Dynamical Mean Field Perspective. Thanks to: G.Kotliar, S. Savrasov, V. Oudovenko DMFT(SUNCA method) two-band Hubbard.
Electronic Structure of Strongly Correlated Materials:a Dynamical Mean Field Theory (DMFT) approach Gabriel Kotliar Physics Department and Center for Materials.
First Principles Investigations of Plutonium Americium and their Mixtures using Dynamical Mean Field Theory Washington February 5-8 (2007). Gabriel.Kotliar.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline, Collaborators, References Introduction to extensions of DMFT for applications to electronic structure.
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective G. Kotliar Physics Department and Center for Materials Theory Rutgers 5 th International.
Gabriel Kotliar Rutgers
Correlated Materials: A Dynamical Mean Field Theory (DMFT) Perspective. Gabriel Kotliar Center for Materials Theory Rutgers University CPhT Ecole Polytechnique.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Superconductivity near the Mott transition a Cluster Dynamical Mean Field Theory (CDMFT) perspective Superconductivity near the Mott transition a Cluster.
Dynamical Mean Field Theory Approach to the Electronic Structure Problem of Solids Gabriel Kotliar Physics Department and Center for Materials Theory.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
University of California DavisKashiwa, July 27, 2007 From LDA+U to LDA+DMFT S. Y. Savrasov, Department of Physics, University of California, Davis Collaborators:
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Presentation transcript:

Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers

Cluster Dynamical Mean Field Theory. Plaquette as Reference Frame. Mott transition and Superconductivity [Anderson RVB] The Mott transition in the actinide series. Strongly Correlated Superconductivity in Am ?

oModel for kappa organics. [O. Parcollet, G. Biroli and G. Kotliar PRL, 92, (2004)) ] oModel for cuprates [ M. Civelli [ Rutgers] Ph.D ThesisO. Parcollet (Saclay), M. Capone (U. Rome) V. Kancharla (Sherbrooke) GK(2005). PRL in press. Cluster Dynamical Mean Field Theories a Strong Coupling Perspective. T. Stanescu and G. Kotliar (in preparation 2005) Work on Am and Pu S. Savrasov K. Haule and GK. References

RVB phase diagram of the Cuprate Superconductors P.W. Anderson. Connection between high Tc and Mott physics. Science 235, 1196 (1987) Connection between the anomalous normal state of a doped Mott insulator and high Tc. Slave boson approach. coherence order parameter.  singlet formation order parameters.Baskaran Zhou Anderson (1987)

RVB phase diagram of the Cuprate Superconductors. Superexchange. The approach to the Mott insulator renormalizes the kinetic energy Trvb increases. The proximity to the Mott insulator reduce the charge stiffness, TBE goes to zero. Superconducting dome. Pseudogap evolves continously into the superconducting state. G. Kotliar and J. Liu Phys.Rev. B 38,5412 (1988) Related approach using wave functions:T. M. Rice group. Zhang et. al. Supercond Scie Tech 1, 36 (1998, Gross Joynt and Rice (1986) M. Randeria N. Trivedi, A. Paramenkanti PRL 87, (2001)

Problems (or non problems) with the approach. Neel order Stability of the pseudogap state at finite temperature. [Ubbens and Lee] Missing incoherent spectra. [ fluctuations of slave bosons ] Dynamical Mean Field Methods are ideal to remove address these difficulties.

T/W Phase diagram of a Hubbard model with partial frustration at integer filling. M. Rozenberg et.al., Phys. Rev. Lett. 75, (1995)..Phys. Rev. Lett. 75, (1995). COHERENCE INCOHERENCE CROSSOVER

Impurity Model-----Lattice Model  Weiss Field

Focus of this work Generalize and extend these early mean field approaches to systems near the Mott transition. Obtain the solution of the 2X 2 plaquette and gain physical understanding of the different CDMFT states. Even if the results are changed by going to larger clusters, the short range physics is general and will teach us important lessons. Follow states as a function of parameters. Adiabatic continuity. Furthermore the results can be stabilized by adding further interactions.

Finite T Mott tranisiton in CDMFT Parcollet Biroli and GK PRL, 92, (2004))

Evolution of the spectral function at low frequency. If the k dependence of the self energy is weak, we expect to see contour lines corresponding to t(k) = const and a height increasing as we approach the Fermi surface.

Evolution of the k resolved Spectral Function at zero frequency. (QMC study Parcollet Biroli and GK PRL, 92, (2004)) ) Uc= , Tc/D=1/44. Tmott~.01 W U/D=2 U/D=2.25

Momentum Space Differentiation the high temperature story T/W=1/88

Physical Interpretation Momentum space differentiation. The Fermi liquid –Bad Metal, and the Bad Insulator - Mott Insulator regime are realized in two different regions of momentum space. Cluster of impurities can have different characteristic temperatures. Coherence along the diagonal incoherence along x and y directions. Connection with slave Boson theory divergence of Sigma13. Connections with RVB (Schmalian and Trivedi)

Cuprate superconductors and the Hubbard Model. PW Anderson 1987

. Allows the investigation of the normal state underlying the superconducting state, by forcing a symmetric Weiss function, we can follow the normal state near the Mott transition. Earlier studies (Katsnelson and Lichtenstein, M. Jarrell, M Hettler et. al. Phys. Rev. B 58, 7475 (1998). T. Maier et. al. Phys. Rev. Lett 85, 1524 (2000) ) used QMC as an impurity solver and DCA as cluster scheme. We use exact diag ( Krauth Caffarel 1995 with effective temperature 32/t=124/D ) as a solver and Cellular DMFT as the mean field scheme. CDMFT study of cuprates

Superconducting State t’=0 Does the Hubbard model superconduct ? Is there a superconducting dome ? Does the superconductivity scale with J ?

Superconductivity in the Hubbard model role of the Mott transition and influence of the super- exchange. ( work with M. Capone V. Kancharla. CDMFT+ED, 4+ 8 sites t’=0).

Order Parameter and Superconducting Gap.

In BCS theory the order parameter is tied to the superconducting gap. This is seen at U=4t, but not at large U. How is superconductivity destroyed as one approaches half filling ?

The superconductivity scales with J, as in the RVB approach. Qualitative difference between large and small U. The superconductivity goes to zero at half filling ONLY above the Mott transition.

Superconducting State t’=0 Does it superconduct ? Yes. Unless there is a competing phase. Is there a superconducting dome ? Yes. Provided U /W is above the Mott transition. Does the superconductivity scale with J ? Yes. Provided U /W is above the Mott transition.

D wave Superconductivity and Antiferromagnetism t’=0 M. Capone V. Kancharla (see also VCPT Senechal and Tremblay ). Antiferromagnetic (left) and d wave superconductor (right) Order Parameters

Can we connect the superconducting state with the “underlying “normal” state “ ? What does the underlying “normal” state look like ?

Follow the “normal state” with doping. Evolution of the spectral function at low frequency. If the k dependence of the self energy is weak, we expect to see contour lines corresponding to Ek = const and a height increasing as we approach the Fermi surface.

: Spectral Function A(k,ω→0)= -1/π G(k, ω →0) vs k U=16 t hole doped K.M. Shen et.al X2 CDMFT

Approaching the Mott transition: CDMFT Picture Fermi Surface Breakup. Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! D wave gapping of the single particle spectra as the Mott transition is approached. Similar scenario was encountered in previous study of the kappa organics. O Parcollet G. Biroli and G. Kotliar PRL, 92, (2004).

What about the electron doped semiconductors ?

Spectral Function A(k,ω→0)= -1/π G(k, ω →0) vs k electron doped P. Armitage et.al Civelli et.al Momentum space differentiation a we approach the Mott transition is a generic phenomena. Location of cold and hot regions depend on parameters.

oQualitative Difference between the hole doped and the electron doped phase diagram is due to the underlying normal state.” In the hole doped, it has nodal quasiparticles near ( ,  /2) which are ready “to become the superconducting quasiparticles”. Therefore the superconducing state can evolve continuously to the normal state. The superconductivity can appear at very small doping. oElectron doped case, has in the underlying normal state quasiparticles leave in the (  0) region, there is no direct road to the superconducting state (or at least the road is tortuous) since the latter has QP at (  /2,  /2).

 Can we connect the superconducting state with the “underlying “normal” state “ ?  Yes, within our resolution in the hole doped case.  No in the electron doped case.  What does the underlying “normal state “ look like ?  Unusual distribution of spectra (Fermi arcs) in the normal state.

To test if the formation of the hot and cold regions is the result of the proximity to Antiferromagnetism, we studied various values of t’/t, U=16.

Introduce much larger frustration: t’=.9t U=16t n=

Approaching the Mott transition: Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! General phenomena, but the location of the cold regions depends on parameters. With the present resolution, t’ =.9 and.3 are similar. However it is perfectly possible that at lower energies further refinements and differentiation will result from the proximity to different ordered states.

Fermi Surface Shape Renormalization ( t eff ) ij =t ij + Re(  ij 

Fermi Surface Shape Renormalization Photoemission measured the low energy renormalized Fermi surface. If the high energy (bare ) parameters are doping independent, then the low energy hopping parameters are doping dependent. Another failure of the rigid band picture. Electron doped case, the Fermi surface renormalizes TOWARDS nesting, the hole doped case the Fermi surface renormalizes AWAY from nesting. Enhanced magnetism in the electron doped side.

Understanding the location of the hot and cold regions. Interplay of lifetime and fermi surface.

Large Doping

Small Doping

How is the Mott insulator approached from the superconducting state ? Work in collaboration with M. Capone, see also V. Kancharla’s talk.

Superconductivity is destroyed by transfer of spectral weight.

Evolution of the low energy tunneling density of state with doping. Decrease of spectral weight as the insulator is approached.

Superconductivity is destroyed at half filling due to a reduction of the one electron weight. Just like in the slave boson. High energy ph asymmetry. Low energy ph symmetry.

Dynamical RVB, real and imaginary parts of the anomalous self energies.

DMFT is a useful mean field tool to study correlated electrons. Provide a zeroth order picture of a physical phenomena. Provide a link between a simple system (“mean field reference frame”) and the physical system of interest. [Sites, Links, and Plaquettes] Formulate the problem in terms of local quantities (which we can usually compute better). Allows to perform quantitative studies and predictions. Focus on the discrepancies between experiments and mean field predictions. Generate useful language and concepts. Follow mean field states as a function of parameters. K dependence gets strong as we approach the Mott transition. Fermi surfaces and lines of zeros of G. Conclusions

Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! General phenomena, but the location of the cold regions depends on parameters. Study the “normal state” of the Hubbard model is useful. Character of the superconductivity is different for small and large U.

Dynamical Mean Field Theory  Basic idea: reduce the quantum many body problem to a one site or a cluster of sites, in a medium of non interacting electrons obeying a self consistency condition.[A. Georges and GK Phys. Rev. B 45, 6497, 1992].  Merge atomic physics and band theory. Atom in a medium. Weiss field. = Quantum impurity model.  Solid in a frequency dependent potential.  Incorporate band structure and orbital degeneracy to achive a realistic description of materials. LDA +DMFT. Realistic combination with band theory: LDA+DMFT V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar, J. Phys. Cond. Mat. 35, 7359 (1997). .

LDA+DMFT V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar, J. Phys. Cond. Mat. 35, 7359 (1997). The light, sp (or spd) electrons are extended, well described by LDA.The heavy, d (or f) electrons are localized treat by DMFT. Use Khon Sham Hamiltonian after substracting the average energy already contained in LDA. Add to the substracted Kohn Sham Hamiltonian a frequency dependent self energy, treat with DMFT. In this method U is either a parameter or is estimated from constrained LDA Describes the excitation spectra of many strongly correlated solids..

Spectral Density Functional Determine the self energy, the density and the structure of the solid self consistently. By extremizing a functional of DENSITY +LOCAL SPECTRA. (Chitra, Kotliar, PRB 2001, Savrasov, Kotliar, PRB 2005). Coupling of electronic degrees of freedom to structural degrees of freedom. Full implementation for Pu. Savrasov and Kotliar Nature Under development. Functional of G and W, self consistent determination of the Coulomb interaction and the Greens function.

Mott Transition in the Actinide Series Lashley et.al.

Pu phases: A. Lawson Los Alamos Science 26, (2000) LDA underestimates the volume of fcc Pu by 30%. Within LDA fcc Pu has a negative shear modulus. LSDA predicts  Pu to be magnetic with a 5  b moment. Experimentally it is not. Treating f electrons as core overestimates the volume by 30 %

Pu is not MAGNETIC, alpha and delta have comparable susceptibility and specific heat.

Total Energy as a function of volume for Pu Total Energy as a function of volume for Pu W (ev) vs (a.u ev) (Savrasov, Kotliar, Abrahams, Nature ( 2001) Non magnetic correlated state of fcc Pu.

Consequence of two DMFT solutions U/W E

Double well structure and  Pu Qualitative explanation of negative thermal expansion[ G. Kotliar J.Low Temp. Phys vol.126, (2002)]See also A. Lawson et.al.Phil. Mag. B 82, 1837 ]

Phonon Spectra Electrons are the glue that hold the atoms together. Vibration spectra (phonons) probe the electronic structure. Phonon spectra reveals instablities, via soft modes. Phonon spectrum of Pu had not been measured.

Phonon freq (THz) vs q in delta Pu X. Dai et. al. Science vol 300, 953, 2003

Inelastic X Ray. Phonon energy 10 mev, photon energy 10 Kev. E = E i - E f Q = k i - k f

DMFT Phonons in fcc  -Pu C 11 (GPa) C 44 (GPa) C 12 (GPa) C'(GPa) Theory Experiment ( Dai, Savrasov, Kotliar,Ledbetter, Migliori, Abrahams, Science, 9 May 2003) (experiments from Wong et.al, Science, 22 August 2003)

J. Tobin et. al. PHYSICAL REVIEW B 68, ,2003

K. Haule, Pu- photoemission with DMFT using vertex corrected NCA.

Actinides and The Mott Phenomena Evolution of the electronic structure between the atomic limit and the band limit in an open shell situation. The “”in between regime” is ubiquitous central theme in strongly correlated systems. Actinides allow us to probe this physics in ELEMENTS. Mott transition across the actinide series [ B. Johansson Phil Mag. 30,469 (1974)]. Revisit the problem using a new insights and new techniques from the solution of the Mott transition problem within DMFT in a model Hamiltonian. Use the ideas and concepts that resulted from this development to give physical qualitative insights into real materials. Turn the technology developed to solve simple models into a practical quantitative electronic structure method.

Mott Transition in the Actinide Series Lashley et.al.

Mott transition in open (right) and closed (left) shell systems. Superconductivity and Singlet Mott State. Anderson RVB. Single Site DMFT calculation. Capone et.al. (2001) S S U U  T Log[2J+1] Uc  ~1/(Uc-U) J=0 ??? Tc

Americium under pressure Density functional based electronic structure calculations:  Non magnetic LDA/GGA predicts volume 50% off.  Magnetic GGA corrects most of error in volume but gives m ~6  B (Soderlind et.al., PRB 2000).  Experimentally, Am has non magnetic f 6 ground state with J=0 ( 7 F 0 ) Experimental Equation of State (after Heathman et.al, PRL 2000) Mott Transition?“Soft” “Hard”

Am under pressure: J.C. GriveauJ. Rebizant G. Lander G. Kotliar PRL (2005)

Photoemission Spectrum from 7 F 0 Americium LDA+DMFT Density of States Experimental Photoemission Spectrum (after J. Naegele et.al, PRL 1984) S. Savrasov et. al. Multiplet Effects F (0) =4.5 eV F (2) =8.0 eV F (4) =5.4 eV F (6) =4.0 eV

J. C. Griveau et. al. (2004)

Americium: mixed valence under pressure.

H.Q. Yuan et. al. CeCu2(Si 2-x Ge x ). Am under pressure Griveau et. al. Superconductivity due to valence fluctuations ?

Conclusions and Outlook Motivation: Mott transition in Americium and Plutonium. In both cases theory (DMFT) and experiment suggest gradual subtle changes. DMFT: Physical connection between spectra and structure. Studied the Mott transition open and closed shell cases.. DMFT: method under construction, but it already gives quantitative results and qualitative insights. Interactions between theory and experiments. Pu: simple picture of alpha delta and epsilon. Interplay of lattice and electronic structure near the Mott transition. Am: Rich physics, mixed valence under pressure ? Superconductivity near the Mott transition.

Actinides and The Mott Phenomena Evolution of the electronic structure between the atomic limit and the band limit in an open shell situation. The “”in between regime” is ubiquitous central theme in strongly correlated systems. Actinides allow us to probe this physics in ELEMENTS. Mott transition across the actinide series [ B. Johansson Phil Mag. 30,469 (1974)]. Revisit the problem using a new insights and new techniques from the solution of the Mott transition problem within DMFT in a model Hamiltonian. Use the ideas and concepts that resulted from this development to give physical qualitative insights into real materials. Turn the technology developed to solve simple models into a practical quantitative electronic structure method.