IAEA - FEC2004 // Vilamoura // 03.11.04 // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk,

Slides:



Advertisements
Similar presentations
H-mode characterization for dominant ECR heating and comparison to dominant NBI or ICR heating F. Sommer PhD thesis advisor: Dr. Jörg Stober Academic advisor:
Advertisements

H. Weisen 1 21st IAEA FEC, Chengdu 2006 Peaked Density Profiles in Low Collisionality H-modes in JET, ASDEX Upgrade and TCV H. Weisen, C. Angioni, M. Maslov,
George Sips ITPA, active control, 14 July Real-time Control ( and development of control systems ) at ASDEX Upgrade George Sips Max-Planck-Institut.
Standard and Advanced Tokamak Operation Scenarios for ITER
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
The Physics Base for ITER and DEMO Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany EURATOM Association Hauptvortrag given at AKE DPG.
ELECTRON CYCLOTRON SYSTEM FOR KSTAR US-Korea Workshop Opportunities for Expanded Fusion Science and Technology Collaborations with the KSTAR Project Presented.
1 J-W. Ahn a H.S. Han b, H.S. Kim c, J.S. Ko b, J.H. Lee d, J.G. Bak b, C.S. Chang e, D.L. Hillis a, Y.M. Jeon b, J.G. Kwak b, J.H. Lee b, Y. S. Na c,
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
Emmanuel JoffrinXXth Fusion Energy Conference, November The « hybrid » scenario in JET: towards its validation for ITER E. Joffrin, A. C. C. Sips,
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
Overview of ASDEX Upgrade Results – Development of integrated operating scenarios for ITER The ASDEX Upgrade Team presented by Sibylle Günter MPI für Plasmaphysik,
The Stability of Internal Transport Barriers to MHD Ballooning Modes and Drift Waves: a Formalism for Low Magnetic Shear and for Velocity Shear The Stability.
Critical Physics Issues for DEMO Max-Planck-Institut für Plasmaphysik L.D. Horton with thanks to the speakers at the recent European Fusion Physics Workshop.
MCZ Equilibrium and Stability of High-  Plasmas in Wendelstein 7-AS M.C. Zarnstorff 1, A. Weller 2, J. Geiger 2, E. Fredrickson 1, S. Hudson.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
Steady State High  N Discharges and Real-Time Control of Current Profile in JT-60U T. Suzuki 1), A. Isayama 1), Y. Sakamoto 1), S. Ide 1), T. Fujita 1),
Y. Sakamoto JAEA Japan-US Workshop on Fusion Power Plants and Related Technologies with participations from China and Korea February 26-28, 2013 at Kyoto.
C Gormezano, S Ide ITPA SSO&EP IEA-LT/ ITPA Collaboration 1 Steady State Operation & Energetic Particles Advanced Scenario need the same development path.
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
ITPA - IOS st Oct Kyoto E. Joffrin JET programme with the ILW in and relations with the IOS Joint experiments.
H-mode characteristics close to L-H threshold power ITPA T&C and Pedestal meeting, October 09, Princeton Yves Martin 1, M.Greenwald, A.Hubbard, J.Hughes,
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
ITER Standard H-mode, Hybrid and Steady State WDB Submissions R. Budny, C. Kessel PPPL ITPA Modeling Topical Working Group Session on ITER Simulations.
MHD Limits to Tokamak Operation and their Control Hartmut Zohm ASDEX Upgrade credits: G. Gantenbein (Stuttgart U), A. Keller, M. Maraschek, A. Mück DIII-D.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
1 Plasma Rotation and Momentum Confinement – DB ITPA - 1 October 2007 by Peter de Vries Plasma Rotation and Momentum Confinement Studies at JET P.C. de.
ARIES-AT Physics Overview presented by S.C. Jardin with input from C. Kessel, T. K. Mau, R. Miller, and the ARIES team US/Japan Workshop on Fusion Power.
Global Stability Issues for a Next Step Burning Plasma Experiment UFA Burning Plasma Workshop Austin, Texas December 11, 2000 S. C. Jardin with input from.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
FOM - Institute for Plasma Physics Rijnhuizen Association Euratom-FOM Diagnostics and Control for Burning Plasmas Discussion All of you.
Current holes at ASDEX Upgrade Presented by O. Gruber for D. Merkl, J. Hobirk, P.J. McCarthy, E. Strumberger, ASDEX Upgrade Team - hardware upgrades for.
1 13 th ITPA Transport Physics Group Meeting Naka, 1-3 October 2007 V. Mukhovatov ITER Rotation Issues.
Emanuele Poli, 17 th Joint Workshop on ECE and ECRH Deurne, May 7-10, 2012 Assessment of ECCD-Assisted Operation in DEMO Emanuele Poli 1, Emiliano Fable.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
S. Coda, MHD workshop, PPPL, 22 Nov Advances in sawtooth control for NTM prevention in JET S. Coda 1, L.-G. Eriksson 2, J. Graves 1, R. Koslowski.
EJD IAEA H-mode WS,, September 28, Overview Introduction — steady-state performance requirements -Global DIII-D and NSTX progress Plasma control.
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority ITB formation and evolution with co- and counter NBI A. R. Field, R. J. Akers,
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
(I) Microturbulence in magnetic fusion devices – New insights from gyrokinetic simulation & theory F. Jenko, C. Angioni, T. Dannert, F. Merz, A.G. Peeters,
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
ISM Working Group 1 ITPA meeting 24 th March 2010 Modelling of JET, Tore Supra and Asdex Upgrade current ramp-up experiments F. Imbeaux, F. Köchl, D. Hogeweij,
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Physics Analysis and Flexibility Issues for FIRE NSO PAC-2 Meeting January 17-18, 2001 S. C. Jardin with input from C.Kessel, J.Mandrekas, D.Meade, and.
Association Euratom-Cea ITPA CDBM group meeting, St Petersburg, October CRONOS simulations of ITER AT scenarios F. Imbeaux, J.F. Artaud, V. Basiuk,
20th IAEA Fusion Energy Conference, 2004 Naka Fusion Research Establishment, Japan Atomic Energy Research Institute Stationary high confinement plasmas.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
Active Control of Neoclassical Tearing Modes toward Stationary High-Beta Plasmas in JT-60U A. Isayama 1), N. Oyama 1), H. Urano 1), T. Suzuki 1), M. Takechi.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
FIR-NTMs on ASDEX Upgrade and JET Active Control of (2,1) NTMs on ASDEX Upgrade S. Günter 1, M. Maraschek 1, M. de Baar 2, D.F. Howell 3, E. Strumberger.
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Darren McDonald, TFS1 meeting, 20th April /20 Proposed JET 2006 confinement experiments D C McDonald Structure of talk: Hybrid studies ELMy H-mode,
Off-axis Current Drive and Current Profile Control in JT-60U T. Suzuki, S. Ide, T. Fujita, T. Oikawa, M. Ishikawa, G. Matsunaga, M. Takechi, M. Seki, O.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Summary Session II MHD Stability and Fast Particle Confinement chaired.
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
1 J. Garcia ITPA-IOS meeting Kyoto October 2011 Association Euratom-CEA Free boundary simulations of the ITER hybrid and steady-state scenarios J.Garcia.
9-12 Sept. 2002E. BARBAT0-ENEA, TTF, Cordoba1 Electron Internal Transport barriers by LHCD and ECRH in FTU-high density plasmas E. Barbato Associazione.
11th IAEA Technical Meeting on H-mode Physics and Transport Barriers" , September, 2007 Tsukuba International Congress Center "EPOCHAL Tsukuba",
ITERに係わる原子分子過程 Atomic and Molecular Processes in ITER SHIMADA, Michiya ITER International Team Annual Meeting of Japan Society of Plasma Science and Nuclear.
T. Morisaki1,3 and the LHD Experiment Group
20th IAEA Fusion Energy Conference,
T. Morisaki1,3 and the LHD Experiment Group
EX/6-1 Heavy Impurity Transport in the Core of JET Plasmas
Presentation transcript:

IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk, L.D. Horton, C.F. Maggi, A. Manini, M. Maraschek, A. Mück, Y.-S. Na +, R. Neu, G. Tardini, ASDEX Upgrade Team. Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany + Korea Basic Science Institute, 52 Yeoeun-Dong, Yusung-Gu, Daejeon, , Korea Max-Planck-Institut für Plasmaphysik The Improved H-Mode at ASDEX Upgrade: A Candidate for an ITER Hybrid Scenario >Characterisation of Improved H-mode >Stability - Role of MHD >Existence Domain >Improved Confinement >Dominant ICRH in Plasma Core EX/4-5

Introduction ITER baseline scenario ELMy H-mode, I p = 15 MA, B t = 5.7 T, q 95 ~ 3 with: H 98(y,2) = 1,  N = 1.8,  Q = 10 “Advanced scenarios“ (by control of current density profile) aim at Improved confinement and/or stability  lower current / longer pulses at similar performance or higher performance Performance measured by figure of merit for fusion gain Q  N ·H 98(y,2) / q 95 2 (= 0.20 for baseline scenario) “Improved H-mode“ on ASDEX Upgrade (since 1998) H 98(y,2) up to 1.4 /  N ≥ 2.5 simultaneously, q 95 ~ 4 with stationary q-profile: q 0  1, low central magnetic shear  Lower current / long pulse ITER operation “Hybrid“ of:steady-state, non-inductive, reversed shear (ITB) and baseline scenario, monotonic shear (q 0 < 1) IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 2 –

Improved H-Mode – Example Early moderate heating: low magnetic shear in the centre; q 0  1; no ITB Increase heating at start of I p flat top: type-I ELMy H-mode, no sawteeth, often MHD (fishbones, small amplitude NTMs) but good confinement Strong heating: (after ~  R )  N rises to 2.9 (close to 4·l i ) H-factor increases small drop in  N and H 98(y,2) (NTMs) For 3.7 s ( = 25·  E )  N ·H 98(y,2) / q 95 2 = 0.25 n e / n GW ~ 0.4 */ * ITER ~ 1.5 – q95 = 3.8 IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 3 – Early moderate heating: low magnetic shear in the centre; q 0  1; no ITB Increase heating at start of I p flat top: type-I ELMy H-mode, no sawteeth, often MHD (fishbones, small amplitude NTMs) but good confinement Strong heating (after ~  R ) Central / minimum q value (MSE & ASTRA simulations) q 0 = q min, i.e. no reversed shear Simulation, including NBCD from off-axis, tangential beams and bootstrap current, fails to reproduce measured q 0 > 1 Early moderate heating: low magnetic shear in the centre; q 0  1; no ITB Increase heating at start of I p flat top: type-I ELMy H-mode, no sawteeth, often MHD (fishbones, small amplitude NTMs) but good confinement Strong heating (after ~  R )

Role of MHD in Improved H-Modes Stationary q-profile (q 0 ~ 1, low central shear) fishbones (not always present) small amplitude NTMs ? bootstrap current, NBCD ? Benign MHD in high performance phase no sawteeth  no seeding of (3,2) NTMs low shear at (3,2) surface  reduced NTM drive higher m-number NTMs  non-linear mode coupling further reduces (3,2) Eventual  -limit (strongly degraded confinement; no disruption) (2,1) mode, mode locking (see Fig.) IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 4 – #18883 MHD

Improved H-Mode – Existence Domain IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 5 – Parameters scans for improved H-modes q 95 scan/ high-n e /  * scan /0.85  n e /n GW /8 - 13E-03 q 95 scan (fixed I p,  ~ 0.2, n e / n GW ~ 0.4) >power ramps > stationary discharge (techn. limited) Max.  *-variation at constant q 95, , n e / n GW 0.6 MA / 1.4 T1.2 MA / 2.8 T #I p (MA)B t (T)q 95 dur /  E  E n e / n GW  N N H 98(y,2)  i* i* */ * ITER E E E E E E E Table:Parameters of selected improved H-modes during various scans q 95 scan / high-n e /  * scan Values averaged over period with: 0.85 ·  N,max   N   N,max Dimensionless parameters *close to ITER value at moderate n e  i *above  i *-ITER (~ 2 ·10 -3 ) within ASDEX Upgrade: no  i *-dependence of performance n e /n GW highn e possible  reactor relevant edge conditions

Summary – Improved H-Mode Existence Domain Data base:All improved H-mode experiments during 2003/04, different time slices, also at low heating power; plus earlier high-n e plasmas Performance vs. measure of bootstrap fraction (  0.5  p ) Achieved H 98 ·  N /q 95 2 > 0.2 for 3 < q 95 < 4 H 98 ·  N /q 95 2 ~ 0.2 for q 95 up to 4.5 In whole q 95 range stationary (technical limit) IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 6 –

“Improved confinement” Improved H-mode: Stronger peaked n e -profiles Density peaking correlated with lower *  account to some extend for higher H-factors However, for n e0 /n e,ped  2: H-factors of improved H-modes somewhat higher at same peaking Possible reasons: –Higher pedestal pressure ? (indications, needs detailed experiments) –ITER-H98(y,2) scaling n e - and  N -dependence ? Transport studies Heat transport in improved H-mode described by ITG / TEM turbulence; threshold in R/L T  “stiff“ temperature profiles IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 7 –

Improved H-Modes with dominant core ICRH #19314 So far: Improved H-mode results obtained with dominant NBI heating  T i > T e, input of particles and momentum, in contrast to  -heating in reactor-type plasma Demonstration of improved H-mode with P ICRH P NBI (ICRH dominates core)  N ~ 2.6 / H 98(y,2) ~ 1.2 (   N · H 98(y,2) / q 95 2 = 0.24) T i ~ T e ICRH (6-10% H minority): P  ion / P  ele ~ 2 : 1 ICRH + NBI P ele (   0.3) higher by ~2.5 compared to NBI only During ICRH Central W concentration ~ > IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 8 – strongly depressed; for details on impurities: see R. Dux et al., EX / P6-14

Summary IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 9 – Improved H-mode at ASDEX Upgrade Stationary, low central shear, q 0 close to 1, with  N > 2.5 & H 98(y,2) > 1 over wide range in q 95 and n e / n GW Specific q-profile: avoids sawteeth, benign MHD during high performance Reasons for increase in H-factor still under investigation Performance:q (  ITER baseline scen.) q 95 ~ 4-4.5:  N  H 98(y,2) / q 95 2 ~ 0.2 Dimensionless parameters * / * ITER close to 1 at low densities  i *: no performance dependence on  i * Obtained also with dominant core RF heating For ITER: Candidate for lower current, long pulse “hybrid“ scenario

Impurity Control Peaked density profiles, no sawteeth  high central impurity concentration, severe for NBI only heating Need for impurity control tool Low level central ECRH (1-1.5 MW) or central ICRH (P ICRH  0.5 · P NBI ) see: R. Dux et al., EX / P6-14 Central W concentration correlated with peaking Central wave heating: Core W concentration strongly reduced Reduced peaking Minor effect on H 98 ·  N Central C concentration reduced as well IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 10 –