15-441: Computer Networking Lecture 18: QoS Thanks to David Anderson and Srini Seshan.

Slides:



Advertisements
Similar presentations
Quality of Service CS 457 Presentation Xue Gu Nov 15, 2001.
Advertisements

Spring 2003CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
Spring 2000CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
Integrated and Differentiated Services Christos Papadopoulos CS551 – Fall 2002 (
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 – QoS.
Xiaowei Yang CS 356: Computer Network Architectures Lecture 19: Integrated Services and Differentiated Services Xiaowei Yang
15-744: Computer Networking L-18 QOS - IntServ. QOS & IntServ QOS IntServ Architecture Assigned reading [She95] Fundamental Design Issues for the Future.
QoS: IntServ and DiffServ Supplemental Slides Aditya Akella 02/26/2007.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 20 – March 25, 2010.
1 Providing Quality of Service in the Internet Based on Slides from Ross and Kurose.
Real-Time Protocol (RTP) r Provides standard packet format for real-time application r Typically runs over UDP r Specifies header fields below r Payload.
Differentiated Services. Service Differentiation in the Internet Different applications have varying bandwidth, delay, and reliability requirements How.
ACN: IntServ and DiffServ1 Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook “ Computer.
CS 268: Differentiated Services Ion Stoica February 25, 2003.
CSE 401N Multimedia Networking-2 Lecture-19. Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet.
15-744: Computer Networking L-18 QOS - IntServ. QOS & IntServ QOS IntServ Architecture Assigned reading [She95] Fundamental Design Issues for the Future.
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
15-744: Computer Networking
School of Information Technologies IP Quality of Service NETS3303/3603 Weeks
15-744: Computer Networking L-22 QOS - IntServ. L -22; © Srinivasan Seshan, QOS & IntServ QOS IntServ Architecture Assigned reading [She95]
Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks.
CSc 461/561 CSc 461/561 Multimedia Systems Part C: 3. QoS.
CS 268: Lecture 11 (Differentiated Services) Ion Stoica March 6, 2001.
Spring 2002CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
Internet Quality of Service. Quality of Service (QoS) The best-effort model, in which the network tries to deliver data from source to destination but.
24-1 Chapter 24. Congestion Control and Quality of Service part Quality of Service 23.6 Techniques to Improve QoS 23.7 Integrated Services 23.8.
Computer Networking Queue Management and Quality of Service (QOS)
Computer Networking Intserv, Diffserv, RSVP.
QoS Guarantees  introduction  call admission  traffic specification  link-level scheduling  call setup protocol  required reading: text, ,
15-744: Computer Networking L-7 QoS. QoS IntServ DiffServ Assigned reading [She95] Fundamental Design Issues for the Future Internet Optional [CSZ92]
Quality of Service. Overview Why QoS? When QoS? One model: Integrated services Contrast to Differentiated Services (more modern; more practical; not covered)
Integrated Services (RFC 1633) r Architecture for providing QoS guarantees to individual application sessions r Call setup: a session requiring QoS guarantees.
IntServ / DiffServ Integrated Services (IntServ)
CSE679: QoS Infrastructure to Support Multimedia Communications r Principles r Policing r Scheduling r RSVP r Integrated and Differentiated Services.
CS Spring 2011 CS 414 – Multimedia Systems Design Lecture 23 - Multimedia Network Protocols (Layer 3) Klara Nahrstedt Spring 2011.
CSE QoS in IP. CSE Improving QOS in IP Networks Thus far: “making the best of best effort”
Computer Networking Intserv, Diffserv, RSVP.
QOS مظفر بگ محمدی دانشگاه ایلام. 2 Why a New Service Model? Best effort clearly insufficient –Some applications need more assurances from the network.
CSC 336 Data Communications and Networking Lecture 8d: Congestion Control : RSVP Dr. Cheer-Sun Yang Spring 2001.
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services MPLS.
CIS679: DiffServ Model r Review of Last Lecture r 2-bit DiffServ architecture.
Wolfgang EffelsbergUniversity of Mannheim1 Differentiated Services for the Internet Wolfgang Effelsberg University of Mannheim September 2001.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 20 – March 25, 2010.
Differentiated Services for the Internet Selma Yilmaz.
© Jörg Liebeherr, Quality-of-Service Architectures for the Internet Integrated Services (IntServ)
Network Support for QoS – DiffServ and IntServ Hongli Luo CEIT, IPFW.
Bjorn Landfeldt, The University of Sydney 1 NETS3303 Networked Systems.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
© Jörg Liebeherr, Quality-of-Service Architectures for the Internet.
CS640: Introduction to Computer Networks Aditya Akella Lecture 21 – QoS.
Advance Computer Networking L-7 QoS. QoS IntServ DiffServ Assigned reading [ [She95] Fundamental Design Issues for the Future Internet [CSZ92] Supporting.
15-441: Computer Networking Lecture 23: QoS and Mobile/Wireless Networking.
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time, Interactive Multimedia: Internet.
EE 122: Integrated Services Ion Stoica November 13, 2002.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
An End-to-End Service Architecture r Provide assured service, premium service, and best effort service (RFC 2638) Assured service: provide reliable service.
Providing QoS in IP Networks
Integrated Services & RSVP Types of pplications Basic approach in IntServ Key components Service models.
Quality of Service Frameworks Hamed Khanmirza Principles of Network University of Tehran.
1 Lecture 15 Internet resource allocation and QoS Resource Reservation Protocol Integrated Services Differentiated Services.
Advanced Computer Networks
CS 268: Computer Networking
Taxonomy of network applications
Advanced Computer Networks
QoS Guarantees introduction call admission traffic specification
EE 122: Lecture 18 (Differentiated Services)
EE 122: Differentiated Services
CIS679: Two Planes and Int-Serv Model
University of Houston Quality of Service Datacom II Lecture 3
Presentation transcript:

15-441: Computer Networking Lecture 18: QoS Thanks to David Anderson and Srini Seshan

Lecture 21: Overview Why QOS? Integrated services RSVP Differentiated services

Lecture 21: Motivation Internet currently provides one single class of “best-effort” service No assurances about delivery Existing applications are elastic Tolerate delays and losses Can adapt to congestion Future “real-time” applications may be inelastic

Lecture 21: Why a New Service Model? What is the basic objective of network design? Maximize total bandwidth? Minimize latency? Maximize user satisfaction – the total utility given to users What does utility vs. bandwidth look like? Must be non-decreasing function Shape depends on application

Lecture 21: Utility Curve Shapes Stay to the right and you are fine for all curves BW U Elastic BW U Hard real-time BW U Delay-adaptive

Lecture 21: Utility curve – Elastic traffic Bandwidth U Elastic Does equal allocation of bandwidth maximize total utility?

Lecture 21: Admission Control If U(bandwidth) is concave  elastic applications Incremental utility is decreasing with increasing bandwidth Is always advantageous to have more flows with lower bandwidth No need of admission control; This is why the Internet works! BW U Elastic

Lecture 21: Utility Curves – Inelastic traffic BW U Hard real-time BW U Delay-adaptive Does equal allocation of bandwidth maximize total utility?

Lecture 21: Inelastic Applications Continuous media applications Lower and upper limit on acceptable performance. BW below which video and audio are not intelligible Internet telephones, teleconferencing with high delay ( ms) impair human interaction Sometimes called “tolerant real-time” since they can adapt to the performance of the network Hard real-time applications Require hard limits on performance E.g. control applications

Lecture 21: Admission Control If U is convex  inelastic applications U(number of flows) is no longer monotonically increasing Need admission control to maximize total utility Admission control  deciding when adding more people would reduce overall utility Basically avoids overload BW U Delay-adaptive

Lecture 21: Overview Why QOS? Integrated services RSVP Differentiated services

Lecture 21: Components of Integrated Services 1.Type of commitment What does the network promise? 2.Packet scheduling How does the network meet promises? 3.Service interface How does the application describe what it wants? 4.Establishing the guarantee How is the promise communicated to/from the network How is admission of new applications controlled?

Lecture 21: Type of Commitments Guaranteed service For hard real-time applications Fixed guarantee, network meets commitment if clients send at agreed-upon rate Predicted service For delay-adaptive applications Two components If conditions do not change, commit to current service If conditions change, take steps to deliver consistent performance (help apps minimize playback delay) Implicit assumption – network does not change much over time Datagram/best effort service

Lecture 21: Scheduling for Guaranteed Traffic Use token bucket filter to characterize traffic Described by rate r and bucket depth b Use Weighted Fair-Queueing at the routers Parekh’s bound for worst case queuing delay = b/r

Lecture 21: Token Bucket Filter Operation: If bucket fills, tokens are discarded Sending a packet of size P uses P tokens If bucket has P tokens, packet sent at max rate, else must wait for tokens to accumulate Tokens enter bucket at rate r Bucket depth b: capacity of bucket

Lecture 21: Token Bucket Operation Tokens Packet Overflow Tokens Packet Enough tokens  packet goes through, tokens removed Not enough tokens  wait for tokens to accumulate

Lecture 21: Token Bucket Characteristics On the long run, rate is limited to r On the short run, a burst of size b can be sent Amount of traffic entering at interval T is bounded by: Traffic = b + r*T Information useful to admission algorithm

Lecture 21: Token Bucket Specs BW Time Flow A Flow B Flow A: r = 1 MBps, B=1 byte Flow B: r = 1 MBps, B=1MB

Lecture 21: Guarantee Proven by Parekh Given: Flow i shaped with token bucket and leaky bucket rate control (depth b and rate r) Network nodes do WFQ Cumulative queuing delay D i suffered by flow i has upper bound D i < b/r, (where r may be much larger than average rate) Assumes that  r < link speed at any router All sources limiting themselves to r will result in no network queuing

Lecture 21: Possible Token Bucket Uses Shaping, policing, marking Delay pkts from entering net (shaping) Drop pkts that arrive without tokens (policing) Let all pkts pass through, mark ones without tokens Network drops pkts without tokens in time of congestion

Lecture 21: Sharing versus Isolation Isolation Isolates well-behaved from misbehaving sources Sharing Mixing of different sources in a way beneficial to all FIFO: sharing each traffic source impacts other connections directly e.g. malicious user can grab extra bandwidth the simplest and most common queueing discipline averages out the delay across all flows Priority queues: one-way sharing high-priority traffic sources have impact on lower priority traffic only has to be combined with admission control and traffic enforcement to avoid starvation of low-priority traffic WFQ: two-way isolation provides a guaranteed minimum throughput (and maximum delay)

Lecture 21: Putting It All Together Assume 3 types of traffic: guaranteed, predictive, best-effort Scheduling: use WFQ in routers Each guaranteed flow gets its own queue All predicted service flows and best effort aggregates in single separate queue Predictive traffic classes Worst case delay for classes separated by order of magnitude When high priority needs extra bandwidth – steals it from lower class Best effort traffic acts as lowest priority class

Lecture 21: Service Interfaces Guaranteed Traffic Host specifies rate to network Why not bucket size b? If delay not good, ask for higher rate Predicted Traffic Specifies (r, b) token bucket parameters Specifies delay D and loss rate L Network assigns priority class Policing at edges to drop or tag packets Needed to provide isolation – why is this not done for guaranteed traffic? WFQ provides this for guaranteed traffic

Lecture 21: Overview Why QOS? Integrated services RSVP Differentiated services

Lecture 21: Components of Integrated Services 1.Type of commitment What does the network promise? 2.Packet scheduling How does the network meet promises? 3.Service interface How does the application describe what it wants? 4.Establishing the guarantee How is the promise communicated How is admission of new applications controlled?

Lecture 21: Service Interfaces Guaranteed Traffic Host specifies rate to network Why not bucket size b? If delay not good, ask for higher rate Predicted Traffic Specifies (r, b) token bucket parameters Specifies delay D and loss rate L Network assigns priority class Policing at edges to drop or tag packets Needed to provide isolation – why is this not done for guaranteed traffic? WFQ provides this for guaranteed traffic

Lecture 21: Resource Reservation Protocol (RSVP) Carries resource requests all the way through the network Main goal: establish “state” in each of the routers so they “know” how they should treat flows. State = packet classifier parameters, bandwidth reservation,.. At each hop consults admission control and sets up reservation. Informs requester if failure A B C D

Lecture 21: RSVP Motivation Resource reservation mechanism for multi-point applications E.g., video or voice conference Heterogeneous receivers Changing membership Use network efficiently Minimize reserved bandwidth Share reservations between receivers Limit control overhead (scaling). Adapt to routing changes A G H D J I F C B E

Lecture 21: PATH Messages PATH messages carry sender’s Tspec Token bucket parameters Routers note the direction PATH messages arrived and set up reverse path to sender Receivers send RESV messages that follow reverse path and setup reservations If reservation cannot be made, user gets an error

Lecture 21: RESV Messages Forwarded via reverse path of PATH Queuing delay and bandwidth requirements Source traffic characteristics (from PATH) Filter specification Which transmissions can use the reserved resources Router performs admission control and reserves resources If request rejected, send error message

Lecture 21: Path and Reservation Messages R Sender 1 Sender 2 Receiver 1 Receiver 2 RR R PATH RESV RESV (merged) Reserved bandwidth is maximum of what downstream receivers can use

Lecture 21: Soft State Periodic PATH and RESV msgs refresh established reservation state Path messages may follow new routes Old information times out Properties Adapts to changes routes and sources Recovers from failures Cleans up state after receivers drop out

Lecture 21: Overview Why QOS? Integrated services RSVP Differentiated services

Lecture 21: Differentiated Services: Motivation and Design Edge routers do fine grain enforcement Typically slower links at edge E.g. mail sorting in post offices Label packets with a type field Uses IP TOS bits E.g. a priority stamp Core routers process packets based on packet marking and defined per hop behavior More scalable than IntServ No per flow state or signaling Classification and conditioning

Lecture 21: Expedited Forwarding PHB User sends within profile & network commits to delivery with requested profile Strong guarantee Possible service: providing a virtual wire Admitted based on peak rate Rate limiting of EF packets at edges only, using token bucket to shape transmission Simple forwarding: classify packet in one of two queues, use priority EF packets are forwarded with minimal delay and loss (up to the capacity of the router)

Lecture 21: Expedited Forwarding Traffic Flow first hop router internal router edge router host edge router ISP Company A Unmarked packet flow Packets in premium flows have bit set Premium packet flow restricted to R bytes/sec

Lecture 21: Assured Forwarding PHB AF defines 4 classes Strong assurance for traffic within profile & allow source to exceed profile Implement services that differ relative to each other (e.g., gold service, silver service…) Admission based on expected capacity usage profiles Within each class, there are three drop priorities Traffic unlikely to be dropped if user maintains profile User and network agree to some traffic profile Edges mark packets up to allowed rate as “in-profile” or high priority Other packets are marked with one of 2 lower “out-of-profile” priorities A congested router drops lower priority packets first Implemented using clever queue management (RED with In/Out bit)

Lecture 21: Edge Router Input Functionality Packet classifier Traffic Conditioner 1 Traffic Conditioner N Forwarding engine Arriving packet Best effort Flow 1 Flow N classify packets based on packet header

Lecture 21: Traffic Conditioning Wait for token Set EF bit Packet input Packet output Test if token Set AF “in” bit token No token Packet input Packet output Drop on overflow

Lecture 21: Router Output Processing What type?High-priority Q Low-priority Q with priority drop AQM (RIO) Packets out EF AF

Lecture 21: Edge Router Policing Arriving packet Is packet marked? Token available? Token available? Clear “in” bit Drop packet Forwarding engine AF “in” set EF set Not marked no

Lecture 21: Comparison Service Service Scope Complexity Scalability Connectivity No isolation No guarantees End-to-end No set-up Highly scalable (nodes maintain only routing state) Best-Effort Per aggregation isolation Per aggregation guarantee Domain Long term setup Scalable (edge routers maintains per aggregate state; core routers per class state) Diffserv Per flow isolation Per flow guarantee End-to-end Per flow setup Not scalable (each router maintains per flow state) Intserv