Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January 22 2007.

Slides:



Advertisements
Similar presentations
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
Advertisements

Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
March 30, 2000SPIE conference, Munich1 LGS AO photon return simulations and laser requirements for the Gemini LGS AO program Céline d’Orgeville, François.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
NGAO Companion Sensitivity Performance Budget (WBS ) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007.
Impact of Cost Savings Ideas on NGAO Instrumentation December 19, 2008 Sean Adkins.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
PALM-3000 PALM-3000 Instrument Requirements Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
Caltech Optical Observatories1 NGAO Point and Shoot Trade Study Status Richard Dekany, Caltech Chris Neyman, Ralf Flicker, W.M. Keck Observatory.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/7/07.
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
NGAO Trade Study : LOWFS type and architecture Stephan Kellner, Ralf Flicker NGAO Team meeting #4, WMKO Kamuela HI, 1/22/2007 Status report.
A Short Introduction to Adaptive Optics Presentation for NGAO Controls Team Erik Johansson August 28, 2008.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
LO WFS Summit 6/19/2015Richard Dekany A Joint Meeting of the NGAO, IRIS, and K1 LO WFS Teams 12/15/2009.
California Association for Research in Astronomy W. M. Keck Observatory KPAO Keck Precision Adaptive Optics Keck Precision AO (KPAO) SSC Presentation January.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Photometric Accuracy Budget Strategy Richard Dekany.
P3K WFS development meeting #2 V Velur Caltech Optical Observatories Pasadena, CA
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
NGAO Status R. Dekany January 31, Next Generation AO at Keck Nearing completion of 18 months System Design phase –Science requirements and initial.
PSWG March Adaptive Optics Systems Engineering on GMT Peter McGregor.
1 Keck NGAO Project Replan: Science Cases and Requirements Claire Max NGAO Team Meeting 6 April 25, 2007.
High Redshift Galaxies: Encircled energy performance budget and IFU spectroscopy Claire Max Sept 14, 2006 NGAO Team Meeting.
W. M. Keck Observatory’s Next Generation Adaptive Optics (NGAO) Facility Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max for NGAO Team:
Design Team Report: AO Operational Tools (aka Acquisition and Diagnostics) Christopher Neyman W. M. Keck Observatory (for the Operational tools team) Keck.
Telescope Errors for NGAO Christopher Neyman & Ralf Flicker W. M. Keck Observatory Keck NGAO Team Meeting #4 January 22, 2007 Hualalai Conference Room,
What Requirements Drive NGAO Cost? Richard Dekany NGAO Team Meeting September 11-12, 2008.
NGAO Wavefront Error Performance Budgets R. Dekany 13 May 2010.
NGAO Controls Team Kickoff Meeting August 5, 2008 Erik Johansson.
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
MCAO Adaptive Optics Module Mechanical Design Eric James.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
GLAO simulations at ESO European Southern Observatory
NSF Center for Adaptive Optics UCO Lick Observatory Laboratory for Adaptive Optics Tomographic algorithm for multiconjugate adaptive optics systems Donald.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
Update to End to End LSST Science Simulation Garrett Jernigan and John Peterson December, 2004 Status of the Science End-to-End Simulator: 1. Sky Models.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
MCAO System Modeling Brent Ellerbroek. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Presentation Outline Modeling objectives and approach Updated.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Improved Tilt Sensing in an LGS-based Tomographic AO System Based on Instantaneous PSF Estimation Jean-Pierre Véran AO4ELT3, May 2013.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
California Association for Research in Astronomy W. M. Keck Observatory KPAO Keck Precision Adaptive Optics 1 Keck Precision AO (KPAO) Notes for AOWG telecom.
FLAO_01: FLAO system baseline & goal performance F. Quirós-Pacheco, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
Gemini AO Program SPIE Opto-Southwest September 17, 2001 Ellerbroek/Rigaut [SW01-114] AO … for ELT’s 1 Adaptive Optics Requirements, Concepts, and Performance.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Pre-focal wave front correction and field stabilization for the E-ELT
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Keck Precision Adaptive Optics Authors: Christopher Neyman 1, Richard Dekany 2, Mitchell Troy 3 and Peter Wizinowich 1. 1 W.M. Keck Observatory, 2 California.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Gemini AO Program March 31, 2000Ellerbroek/Rigaut [ ]1 Scaling Multi-Conjugate Adaptive Optics Performance Estimates to Extremely Large Telescopes.
Computationally Efficient Wavefront Reconstruction for Multi-Conjugate Adaptive Optics (MCAO) Brent Ellerbroek AURA New Initiatives Office IPAM Workshop.
Lecture 14 AO System Optimization
Trade Study Report: Fixed vs. Variable LGS Asterism
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January

2 Outline Background on sky coverage simulator Assumptions and parameter set chosen for NGAO What spectral band should we use for the LOWFS? How many LOWFS do we need? What modes should the LOWFS measure? What is the sky coverage for different science cases? What is the effect of the LGS asterism radius on partial correction and sky coverage?

3 Sodium LGS at 90km Discrete layers of turbulence, described by Zernikes, a. NGS at infinity generated with guide star statistics (Bahcall-Soneira, Spagna models) a(1) a(3) a(2) Calculate transformation matrices from LGS, NGS, science points to aperture Modeling overview

4 Simulator methodology Calculate atmospheric tip/tilt error with minimum variance estimator from transformation matrices and covariance matrices of atmosphere & noise Optimize sampling frequency to balance servo lag and noise Choose combination of NGS that gives lowest total error Monte Carlo over many NGS constellations Generate cumulative density functions of performance

5 Checking against an AO Simulation Compare to LAOS for 4 asterisms for an 8m telescope with no windshake, no sodium tracking error, integrator control, and 10 phase screens for each asterism –Generally good agreement, but LAOS results somewhat poorer with noise Median tip/tilt error (nm) AsterismLAOS without noise Sky cov. without noise LAOS with noise Sky cov. with noise Good (equilateral) 71±958115±1184±2 25 th percentile 76±138688±9119±0 Median106± ±15178±5 75 th percentile 192± ±52334±4

6 Simulation Parameters/Assumptions Finite outer scale (75m) Mauna Kea (7 layer) turbulence and velocity profile First 6 Zernike orders considered, only tip/tilt errors are evaluated Detector pixels are seeing-limited in V band (0.5 arc sec) and diffraction-limited in J/H/K bands (λ /D rads) NGS are partially corrected in J/H/K bands. Not in V band. Integral control with g=0.5 7 LGS asterism (1 on-axis, 6 in a ring) = Ralf’s asterism 7a LGS measurements are noise-free Limiting magnitude is chosen to be 19 for all spectral bands At zenith Read noise = 10 e Run over 500 NGS constellations

7 Median Field of View J=16.4 Field Galaxies case: Latitude=30 deg J=17.1 J=19.0 J=17.4 J=18.7 J=16.6

8 Example Cumulative Density Function Errors are in nm. 1 mas =12.1 nm for a 10m telescope Field Galaxies science case J band 30 th percentile=107nm

9 Choice of Spectral Band Trade-off between: 1.Partial correction 2.Sky background 3.Zeropoint (number of photons) 4.Spot size As λ increases, tip/tilt estimate

10 Spectral Band Errors are in nm. 1 mas =12.1 nm for a 10m telescope Tip/tilt error (nm) Spectral band 10 th percentileMedian90 th percentile V * J H K For field galaxies science case and 1 TTFA + 2TT sensors

11 NGS Patrol Field Diameter For field galaxies science case, J band, and 1 TTFA + 2TT sensors

12 LOWFS number & order Tip/tilt error (nm) LOWFS10 th percentileMedian90 th percentile 1 TT TTFA TT TTFA + 2TT Errors are in nm. 1 mas =12.1 nm for a 10m telescope For field galaxies science case, and J band TT=tip/tilt (ie 1x1), TTFA=tip/tilt/focus/astigmatism (2x2)

13 Different science cases Three science cases chosen from NGAO proposal Science cases have different higher order error, galactic latitude and science field size 1.Goods N (218 nm, 45 deg, 1.09 arc min) 2.Narrow Field (86 nm, 10 deg, arc min) 3.Field Galaxies (173nm, 30 deg, 0.7 arc min)

14 Degree of partial correction Partial correction depends on LGS asterism radius and higher order error from science case Goods N (218nm)Field galaxies (173nm) Narrow Field (86nm)

15 Median results for science cases/asterisms Median tip/tilt error (nm) Science Case LGS radius =7”.2 LGS radius =21”.6 LGS radius =35”.9 Goods N Narrow Field Field Galaxies Errors are in nm. 1 mas =12.1 nm for a 10m telescope

16 Conclusions IR WFS (either J or H) is preferable to visible Multiple NGS WFS significantly improve tip/tilt estimate Measuring focus with 1 of the tilt sensors also helps A wider LGS asterism improves partial correction over the field and hence sky coverage