Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods: Error.

Slides:



Advertisements
Similar presentations
Nonnegative Matrix Factorization with Sparseness Constraints S. Race MA591R.
Advertisements

Andrew Cosand ECE CVRR CSE
Various Regularization Methods in Computer Vision Min-Gyu Park Computer Vision Lab. School of Information and Communications GIST.
L1 sparse reconstruction of sharp point set surfaces
TVL1 Models for Imaging: Global Optimization & Geometric Properties Part I Tony F. Chan Math Dept, UCLA S. Esedoglu Math Dept, Univ. Michigan Other Collaborators:
Bregman Iterative Algorithms for L1 Minimization with
Mathematics1 Mathematics 1 Applied Informatics Štefan BEREŽNÝ.
Engineering Optimization
1 OR II GSLM Outline  some terminology  differences between LP and NLP  basic questions in NLP  gradient and Hessian  quadratic form  contour,
Globally Optimal Estimates for Geometric Reconstruction Problems Tom Gilat, Adi Lakritz Advanced Topics in Computer Vision Seminar Faculty of Mathematics.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods Segmentation.
Martin Burger Total Variation 1 Cetraro, September 2008 Variational Methods and their Analysis Questions: - Existence - Uniqueness - Optimality conditions.
Separating Hyperplanes
Chapter 2: Lasso for linear models
The Most Important Concept in Optimization (minimization)  A point is said to be an optimal solution of a unconstrained minimization if there exists no.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Convex and Nonconvex Relaxation Approaches.
Martin Burger Institut für Numerische und Angewandte Mathematik CeNoS Level set methods for imaging and application to MRI segmentation.
Front propagation in inverse problems and imaging Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging.
1 Can this be generalized?  NP-hard for Potts model [K/BVZ 01]  Two main approaches 1. Exact solution [Ishikawa 03] Large graph, convex V (arbitrary.
Macro-calibration Kamin Whitehouse David Culler WSNA, September
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and Related Methods II.
OPTIMAL CONTROL SYSTEMS
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Computing Transmembrane Potentials from.
1 Total variation minimization Numerical Analysis, Error Estimation, and Extensions Martin Burger Johannes Kepler University Linz SFB Numerical-Symbolic-Geometric.
Preconditioned Level Set Flows Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center.
Empirical Saddlepoint Approximations for Statistical Inference Fallaw Sowell Tepper School of Business Carnegie Mellon University September 2006.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods Numerical.
Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and Related Methods.
Numerical Solution of a Non- Smooth Eigenvalue Problem An Operator-Splitting Approach A. Caboussat & R. Glowinski.
1 Regularization with Singular Energies: Error Estimation and Numerics Martin Burger Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms.
Degree of reproducibility of measurements. Variations are largely due to the appropriate use of techniques, concentration of the technician Sometimes linked.
Error Estimation in TV Imaging Martin Burger Institute for Computational and Applied Mathematics European Institute for Molecular Imaging (EIMI) Center.
Background vs. foreground segmentation of video sequences = +
1 Regularisierung mir Singulären Energien Martin Burger Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms Universität Münster
Martin Burger Total Variation 1 Cetraro, September 2008 Numerical Schemes Wrap up approximate formulations of subgradient relation.
Clustering with Bregman Divergences Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, Joydeep Ghosh Presented by Rohit Gupta CSci 8980: Machine Learning.
1 Level Sets for Inverse Problems and Optimization I Martin Burger Johannes Kepler University Linz SFB Numerical-Symbolic-Geometric Scientific Computing.
1 Linear Classification Problem Two approaches: -Fisher’s Linear Discriminant Analysis -Logistic regression model.
EXAMPLES: Example 1: Consider the system Calculate the equilibrium points for the system. Plot the phase portrait of the system. Solution: The equilibrium.
CHAPTER 4 S TOCHASTIC A PPROXIMATION FOR R OOT F INDING IN N ONLINEAR M ODELS Organization of chapter in ISSO –Introduction and potpourri of examples Sample.
Minimizing general submodular functions
Mathematical formulation XIAO LIYING. Mathematical formulation.
CS Statistical Machine learning Lecture 18 Yuan (Alan) Qi Purdue CS Oct
Discriminative Training and Acoustic Modeling for Automatic Speech Recognition - Chap. 4 Discriminative Training Wolfgang Macherey Von der Fakult¨at f¨ur.
Computational Intelligence: Methods and Applications Lecture 23 Logistic discrimination and support vectors Włodzisław Duch Dept. of Informatics, UMK Google:
Engineering Optimization Chapter 3 : Functions of Several Variables (Part 1) Presented by: Rajesh Roy Networks Research Lab, University of California,
1 Markov random field: A brief introduction (2) Tzu-Cheng Jen Institute of Electronics, NCTU
High-dimensional Error Analysis of Regularized M-Estimators Ehsan AbbasiChristos ThrampoulidisBabak Hassibi Allerton Conference Wednesday September 30,
Presenter : Kuang-Jui Hsu Date : 2011/3/24(Thur.).
Introduction to Semidefinite Programs Masakazu Kojima Semidefinite Programming and Its Applications Institute for Mathematical Sciences National University.
Part 4 Nonlinear Programming 4.1 Introduction. Standard Form.
1 Enclosing Ellipsoids of Semi-algebraic Sets and Error Bounds in Polynomial Optimization Makoto Yamashita Masakazu Kojima Tokyo Institute of Technology.
+ Quadratic Programming and Duality Sivaraman Balakrishnan.
Network Systems Lab. Korea Advanced Institute of Science and Technology No.1 Ch. 3 Iterative Method for Nonlinear problems EE692 Parallel and Distribution.
Using Neumann Series to Solve Inverse Problems in Imaging Christopher Kumar Anand.
Regularized Least-Squares and Convex Optimization.
Introduction to Medical Imaging Week 6: Introduction to Medical Imaging Week 6: Denoising (part II) – Variational Methods and Evolutions Guy Gilboa Course.
1 Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 23, 2010 Piotr Mirowski Based on slides by Sumit.
Estimator Properties and Linear Least Squares
Part 4 Nonlinear Programming
Computational Optimization
Systems of Inequalities
NESTA: A Fast and Accurate First-Order Method for Sparse Recovery
Multiple Column Partitioned Min Max
Absolute Value inequalities
Optimal sparse representations in general overcomplete bases
Part 4 Nonlinear Programming
Solving absolute value equations visually
Algebra 1 Section 4.7.
The Second Order Adjoint Analysis
Presentation transcript:

Martin Burger Institut für Numerische und Angewandte Mathematik European Institute for Molecular Imaging CeNoS Total Variation and related Methods: Error Estimation

Martin Burger Total Variation 2 Cetraro, September 2008 Error Estimation Start with the quadratic case D generalizes gradient Optimality

Martin Burger Total Variation 3 Cetraro, September 2008 Error Estimation Estimate 1: Two Solutions of Variational Problems Difference Scalar product with

Martin Burger Total Variation 4 Cetraro, September 2008 Error Estimation Use Young‘s inequality

Martin Burger Total Variation 5 Cetraro, September 2008 Error Estimation Estimate 2: Asymptotic for exact data Need regularity for : Source condition

Martin Burger Total Variation 6 Cetraro, September 2008 Error Estimation Source Condition Equivalent to existence of saddle point for

Martin Burger Total Variation 7 Cetraro, September 2008 Error Estimation

Martin Burger Total Variation 8 Cetraro, September 2008 Error Estimation Estimate 3: Asymptotic for noisy data

Martin Burger Total Variation 9 Cetraro, September 2008 Error Estimation Similar estimation as above yields

Martin Burger Total Variation 10 Cetraro, September 2008 Error Estimation Nonlinear Variational Method Optimality condition

Martin Burger Total Variation 11 Cetraro, September 2008 Error Estimation Stability Estimate between two solutions ´ Same procedure as before: take difference and use duality product with

Martin Burger Total Variation 12 Cetraro, September 2008 Error Estimation Error measure: symmetric Bregman distance ´ Note: symmetric Bregman distance is sum of non-symmetric ones

Martin Burger Total Variation 13 Cetraro, September 2008 Bregman distance R smooth and strictly convex in some H-space Same for symmetric Bregman distance

Martin Burger Total Variation 14 Cetraro, September 2008 Error Estimation R nonsmooth: Bregman distance multivalued and depends on the choice of the subgradient Note: error estimate possible for any appropriate subgradient

Martin Burger Total Variation 15 Cetraro, September 2008 Error Estimation R not strictly convex: Bregman distance is not a strict distance, possibly

Martin Burger Total Variation 16 Cetraro, September 2008 Error Estimation Bregman distance example

Martin Burger Total Variation 17 Cetraro, September 2008 Error Estimation Sparsity measure

Martin Burger Total Variation 18 Cetraro, September 2008 Error Estimation Total Variation Contrast change

Martin Burger Total Variation 19 Cetraro, September 2008 Error Estimation Contrast Change

Martin Burger Total Variation 20 Cetraro, September 2008 Error Estimation Estimate 2: Asymptotic for exact data

Martin Burger Total Variation 21 Cetraro, September 2008 Error Estimation Asymptotic

Martin Burger Total Variation 22 Cetraro, September 2008 Error Estimation Source condition

Martin Burger Total Variation 23 Cetraro, September 2008 Error Estimation Error estimate in Bregman distance Analogous in the noisy case

Martin Burger Total Variation 24 Cetraro, September 2008 Error Estimation Multivalued estimate Note: error estimate holds for any Open interpretation for total variation and

Martin Burger Total Variation 25 Cetraro, September 2008 Error Estimation TV Subgradients and edges

Martin Burger Total Variation 26 Cetraro, September 2008 Error Estimation TV subgradients

Martin Burger Total Variation 27 Cetraro, September 2008 Error Estimation

Martin Burger Total Variation 28 Cetraro, September 2008 Error Estimation

Martin Burger Total Variation 29 Cetraro, September 2008 Error Estimation

Martin Burger Total Variation 30 Cetraro, September 2008 Error Estimation Mean Curvature Source condition means smoothness of edge sets !!

Martin Burger Total Variation 31 Cetraro, September 2008 Error Estimation Bregman distance

Martin Burger Total Variation 32 Cetraro, September 2008 Error Estimation Second term